GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • 2015-2019  (2)
  • 2016  (2)
Material
Publisher
  • American Meteorological Society  (2)
Language
Years
  • 2015-2019  (2)
Year
  • 2016  (2)
Subjects(RVK)
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 13 ( 2016-07-01), p. 4817-4842
    Abstract: Ocean warming accounts for the majority of the earth’s recent energy imbalance. Historic ocean heat content (OHC) changes are important for understanding changing climate. Calculations of OHC anomalies (OHCA) from in situ measurements provide estimates of these changes. Uncertainties in OHCA estimates arise from calculating global fields from temporally and spatially irregular data (mapping method), instrument bias corrections, and the definitions of a baseline climatology from which anomalies are calculated. To investigate sensitivity of OHCA estimates for the upper 700 m to these different factors, the same quality-controlled dataset is used by seven groups and comparisons are made. Two time periods (1970–2008 and 1993–2008) are examined. Uncertainty due to the mapping method is 16.5 ZJ for 1970–2008 and 17.1 ZJ for 1993–2008 (1 ZJ = 1 × 1021 J). Uncertainty due to instrument bias correction varied from 8.0 to 17.9 ZJ for 1970–2008 and from 10.9 to 22.4 ZJ for 1993–2008, depending on mapping method. Uncertainty due to baseline mean varied from 3.5 to 14.5 ZJ for 1970–2008 and from 2.7 to 9.8 ZJ for 1993–2008, depending on mapping method and offsets. On average mapping method is the largest source of uncertainty. The linear trend varied from 1.3 to 5.0 ZJ yr−1 (0.08–0.31 W m−2) for 1970–2008 and from 1.5 to 9.4 ZJ yr−1 (0.09–0.58 W m−2) for 1993–2008, depending on method, instrument bias correction, and baseline mean. Despite these complications, a statistically robust upper-ocean warming was found in all cases for the full time period.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 15 ( 2016-08-01), p. 5575-5588
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 15 ( 2016-08-01), p. 5575-5588
    Abstract: The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr)−1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observed salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. Surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...