GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
  • 2015  (4)
Document type
Keywords
Language
Years
  • 2015-2019  (4)
Year
  • 1
    Online Resource
    Online Resource
    Les Ulis :EDP Sciences,
    Keywords: Electronic books.
    Description / Table of Contents: No detailed description available for "Le climat : la Terre et les Hommes".
    Type of Medium: Online Resource
    Pages: 1 online resource (241 pages)
    Edition: 1st ed.
    ISBN: 9782759817597
    Series Statement: Une Introduction à ... Series
    Language: French
    Note: Intro -- Table des matières -- Préface -- Avant-propos -- Introduction -- 1. Le système climatique : l'atmosphère et l'océan -- 1.1 La Terre, planète chauffée par le Soleil -- 1.2 L'atmosphère -- 1.3 L'océan -- 1.4 Échanges atmosphère océan -- 1.5 Conclusion -- 2. Les acteurs du climat et leurs interactions -- 2.1 Le cycle de l'eau -- 2.2 Le cycle du carbone -- 2.3 L'effet de serre -- 2.4 Les nuages -- 2.5 Les aérosols -- 2.6 Rôle de l'océan dans la machine climatique -- 2.7 Interactions cryosphère-climat -- 2.8 Interactions biosphère continentale - climat -- 2.9 Interactions du climat avec les continents et la lithosphère -- 2.10 Les échanges de matière et les temps caractéristiques des processus climatiques -- 2.11 Forçages, rétroactions et sensibilité climatique -- 2.12 Conclusion -- 3. Diversité des climats et variabilité à grande échelle -- 3.1 La diversité des climats -- 3.2 Les modes de variabilité : oscillationso céan-atmosphère -- 3.3 Conclusion -- 4. La modélisation du climat -- 4.1 Une évolution rapide des modèles de climat -- 4.2 Les fondements des modèles de climat -- 4.3 L'ajustement des modèles -- 4.4 Les modèles de complexité intermédiaire -- 4.5 Les modèles régionaux -- 4.6 Conclusion -- 5. Le réchauffement -- 5.1 Les températures mesurées depuis 1880 -- 5.2 Des témoins du réchauffement dans l'environnement -- 5.3 Qu'est-ce qui peut faire changer le climat ? -- 5.4 Conclusion -- 6. Les perturbations du climat, facteurs anthropiques et naturels -- 6.1 Le dioxyde de carbone CO2 -- 6.2 Autres gaz à effet de serre -- 6.3 La part des divers gaz à l'effet de serre additionnel -- 6.4 Le changement d'usage des sols -- 6.5 Les autres causes possibles de perturbation du climat -- 6.6 Effet combiné des différentes perturbations -- 6.7 Détection et attribution des perturbations anthropiques sur le climat récent -- 6.8 Conclusion. , 7. Variations passées du climat -- 7.1 Forçages et rétroactions -- 7.2 Archives et proxies -- 7.3 Les derniers 60 millions d'années : de la Terre « serre » à la Terre « glaciaire » -- 7.4 Instabilités abruptes -- 7.5 Le dernier millénaire -- 7.6 Changements climatiques en cours et futurs dans la perspective de l'évolution passée du climat -- 7.7 Conclusion -- 8. Quel climat demain ? -- 8.1 Tester un ensemble de possibles : les trajectoires radiatives représentatives -- 8.2 Les projections climatiques -- 8.3 Couplage entre le climat et le cycle du carbone -- 8.4 Incertitudes sur l'amplitude du réchauffement simulé -- 8.5 Incertitudes et horizon temporel -- 8.6 Cycle hydrologique et extrêmes de précipitation -- 8.7 La fonte de la calotte glaciaire et la circulation thermohaline de l'océan -- 8.8 Traduction environnementale, études de vulnérabilité et d'impacts -- 8.9 Conclusion -- 9. Conclusion -- Index -- Des livres récents sur le climat -- Des sites internetqui parlent du climat.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Capron, Emilie; Govin, Aline; Stone, Emma J; Masson-Delmotte, Valerie; Mulitza, Stefan; Otto-Bliesner, Bette L; Rasmussen, Tine Lander; Sime, Louise C; Waelbroeck, Claire; Wolff, Eric William (2014): Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quaternary Science Reviews, 103, 116-133, https://doi.org/10.1016/j.quascirev.2014.08.018
    Publication Date: 2024-05-18
    Description: The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
    Keywords: 104-644; 162-980; 177-1089; 177-1094; 20; 36C; 57-07; 71-19; 90-594; Age, comment; Agulhas Basin; Agulhas Ridge; Antarctica; ANT-IX/4; ANT-X/5; ANT-XI/2; APSARA2; APSARA4; Area/locality; ARK-II/5; Atlantic Ridge; BC; Box corer; CALYPSO; Calypso Corer; Center for Marine Environmental Sciences; CH69-K09; Charles Darwin; Chatham Rise; Climate Change: Learning from the past climate; Comment; COMPCORE; Composite Core; DF; Dome_Fuji; Dome C; Dome C, Antarctica; DRILL; Drilling/drill rig; EDC; EDML; EDRILL; Eirik Drift; Elevation of event; ENAM33; EPICA-Campaigns; EPICA Dome C; EPICA drill; EPICA Dronning Maud Land, DML28C01_00; Event label; EW9302; EW9302-JPC2; EW9302-JPC8; Faroe Islands margin; GC; Giant piston corer (Calypso); GIK23243-1 PS05/431; GIK23414-9; Glomar Challenger; GPC-C; Gravity corer; Gravity corer (Kiel type); Greenland; Greenland Rise; Håkon Mosby; HM57; HM57-07; HM71; HM71-19/1; Ice_core_diverse; ICEDRILL; Ice drill; Iceland; IMAGES I; IMAGES III - IPHIS; IMAGES V; IMAGES XI - P.I.C.A.S.S.O.; Joides Resolution; JPC; Jumbo Piston Core; K708-001; KAL; KAL15; Kasten corer; Kasten corer 15 cm; Kerguelen Plateau; KL; Kohnen Station; Labrador Sea; Latitude of event; Leg104; Leg162; Leg177; Leg90; Le Suroît; Longitude of event; M17/2; M23414; Marion Dufresne (1972); Marion Dufresne (1995); MARUM; Maurice Ewing; MD02-2488; MD032664; MD03-2664; MD101; MD106; MD114; MD125; MD 125 / SWIFT BIS-CARHOT; MD132; MD38; MD84-551; MD88-769; MD88-770; MD94-101; MD94-102; MD952009; MD95-2009; MD952010; MD95-2010; MD952014; MD95-2014; MD972120; MD97-2120; MD972121; MD97-2121; MD99-2227; Meteor (1986); MUC; MultiCorer; NA87-25; NEAP; NEAP-18K; NEEM; Newfoundland margin; North Atlantic; Northeast Atlantic; Norwegian Sea; PALEOCINAT; Past4Future; PC; Piston corer; Piston corer (BGR type); Polarstern; PS05; PS1243-1; PS18; PS18/238; PS18/260; PS2082-3; PS2102-2; PS22/769; PS22 06AQANTX_5; PS2276-4; PS2489-2; PS28; PS28/256; Reference of data; Sampling/drilling ice; SL; SO136; SO136_111GC-12; Sonne; South Atlantic Ocean; Southern Ocean; South Indian Ocean; South Pacific; South Pacific/CONT RISE; SU90-03; SU90-08; SU90-39; SU90-44; TASQWA; Temperature, air; Temperature, difference; Temperature, water; Temperature, water, interpolated; Temperature anomaly; Temperature anomaly, standard error; Type; Uncertainty; V30; V30-97; Vema; Voring Plateau; Vostok
    Type: Dataset
    Format: text/tab-separated-values, 974 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-09
    Description: During 7–12 July 2012, extreme moist and warm conditions occurred over Greenland, leading to widespread surface melt. To investigate the physical processes during the atmospheric moisture transport of this event, we study the water vapor isotopic composition using surface in situ observations in Bermuda Island, South Greenland coast (Ivittuut), and northwest Greenland ice sheet (NEEM), as well as remote sensing observations (Infrared Atmospheric Sounding Interferometer (IASI) instrument on board MetOp-A), depicting propagation of similar surface and midtropospheric humidity and
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-19
    Description: An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...