GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • 2010-2014  (5)
  • 2014  (5)
Document type
  • Articles  (5)
Source
Years
  • 2010-2014  (5)
Year
Topic
  • 1
    Publication Date: 2014-07-17
    Description: The Tertiary Skaergaard intrusion, East Greenland, intruded at the shallow crustal unconformity between Precambrian amphibolite-facies gneisses and overlying Tertiary Plateau Basalts. Maximum contact metamorphic temperatures in quartzo-feldspathic gneisses were determined in two sample traverses across the aureole on the western contact of the intrusion using a combination of microstructural observations (both optical and cathodoluminescence) and the titanium-in-quartz (TitaniQ) thermometer. The onset of recrystallization of the quartz in the gneisses occurred between 390 and 340 m from the contact whereas H 2 O-fluxed melting occurred in gneisses closer than 130 m from the contact (where T 〉 ~ 675°C). The maximum temperature recorded by quartz at the contact is ~865 ± 70°C. Melt fractions reach 50–60 vol. % in some samples although the melt is heterogeneously distributed on all scales. Minor bands of amphibolite-facies mafic gneiss are extensively reacted to an anhydrous pyroxene-bearing hornfels close to the contact, whereas those further than ~130 m are overprinted by a greenschist-facies assemblage. Discrepancies between the expected temperature for the amphibolite- to greenschist-facies reaction and temperatures obtained from adjacent quartzo-feldspathic gneisses are consistent with the formation of the anhydrous pyroxene hornfels directly from the mafic gneiss, with the lower-grade greenschist-facies assemblage forming on the retrograde path after the establishment of limited hydrothermal activity. It is unlikely that devolatilization reactions in the gneiss produced sufficient H 2 O to account for the pegmatitic features formed in the Marginal Border Series in the intrusion. A simple one-dimensional thermal model, neglecting any advection of heat by hydrothermal circulation, was fitted to the profile of maximum temperature through the aureole. The generally lower temperatures seen in the gneiss compared with those previously reported for the contact metamorphosed basalts higher up the walls of the intrusion are consistent with a heterogeneous release of latent heat of crystallization.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-17
    Description: New compositional profiles across plagioclase grains from the Layered Series (LS), Marginal Border Series (MBS) and Upper Border Series (UBS) of the Skaergaard intrusion are used to understand the mechanisms of cumulate rock solidification and the fate of the interstitial liquid. The data show that plagioclase crystals display three types of compositional profile over the whole intrusion, as follows. (1) Grains with normal zoning, which dominate the MBS and UBS. These are interpreted as having formed at the top of a crystal mush and then buried in the cumulate pile. Crystallization of the interstitial melt resulted in liquid differentiation and produced normally zoned rims on plagioclase cores. (2) Unzoned crystals, which dominate the upper part of the LS, also crystallized at the top of the mush and were then buried in mush with a low interstitial liquid fraction or one experiencing convective movements that kept the liquid to a constant composition. (3) Crystals with a mantle of decreasing An content followed by a rim of constant composition. Grains showing this complex zoning mostly occur in the lower parts of the LS. Depending on the stratigraphic position within the intrusion, the composition of the rim can be An 56 , An 51 or An 40 . In the main magma body, these compositions (An contents) correspond to those of plagioclase primocrysts (e.g. cores) at the appearance of cumulus clinopyroxene (An 56 ), Fe–Ti oxides (An 51 ) and apatite (An 40 ). Compositional buffering of plagioclase rims is interpreted as being a consequence of enhanced release of latent heat of crystallization at the appearance of new interstitial phases in the crystal mush. When a new phase saturates, the latent heat contribution to the global enthalpy budget of the system becomes sufficiently high to keep the interstitial melt at its liquidus temperature for a period of time that could exceed thousands of years. Under these conditions, equilibrium, adcumulus growth together with diffusion and possibly advection of chemical components result in the formation of plagioclase rims of constant composition (An content). Efficient thermal buffering of the mush liquid depends on the porosity (i.e. fraction of liquid within the mush) and the degree of compositional homogeneity of the mush. In a heterogeneous and highly porous mush, saturation of the new phase occurs in the coldest part of the mush and the enhanced latent heat release at the saturation of this phase is quickly dissipated to the whole volume of liquid, including the warmest part that is not yet saturated in a new phase. As a consequence, no thermal buffering occurs and interstitial crystallization produces grains with normal zoning. The distribution of the various types of plagioclase grains throughout the Skaergaard intrusion can therefore be used to infer the spatial variability in the physical properties of the crystal mush, such as the residual porosity, both at an intrusion-wide scale and at a millimetre- to centimetre-scale.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-01
    Description: Objective The commensal microbiota, host immunity and metabolism participate in a signalling network, with diet influencing each component of this triad. In addition to diet, many elements of a modern lifestyle influence the gut microbiota but the degree to which exercise affects this population is unclear. Therefore, we explored exercise and diet for their impact on the gut microbiota. Design Since extremes of exercise often accompany extremes of diet, we addressed the issue by studying professional athletes from an international rugby union squad. Two groups were included to control for physical size, age and gender. Compositional analysis of the microbiota was explored by 16S rRNA amplicon sequencing. Each participant completed a detailed food frequency questionnaire. Results As expected, athletes and controls differed significantly with respect to plasma creatine kinase (a marker of extreme exercise), and inflammatory and metabolic markers. More importantly, athletes had a higher diversity of gut micro-organisms, representing 22 distinct phyla, which in turn positively correlated with protein consumption and creatine kinase. Conclusions The results provide evidence for a beneficial impact of exercise on gut microbiota diversity but also indicate that the relationship is complex and is related to accompanying dietary extremes.
    Keywords: Editor's choice, Press releases
    Print ISSN: 0017-5749
    Electronic ISSN: 1468-3288
    Topics: Medicine
    Published by BMJ Publishing Group
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-24
    Description: Fluorine and chlorine X-ray count rates are known to vary significantly during electron probe microanalysis (EPMA) of apatite. Since the rate, timing, and magnitude of this variation are a function of apatite orientation and composition, as well as EPMA operating conditions, this represents a significant problem for volatile element analysis in apatite. Although the effect is thought to be an intrinsic crystallographic response to electron-beam exposure, the mechanisms and causes of the count rate variability remain unclear. We tackle this by examining directly the effects of electron-beam exposure on apatite, by performing secondary ion mass spectrometry (SIMS) depth profiles of points previously subject to electron-beam irradiation. During irradiation of fluorapatite, oriented with the c -axis parallel to the electron beam, halogens become progressively concentrated at the sample surface, even under a relatively low power (15 nA, 10–15 kV) beam. This surface enrichment corresponds to an observed increase in EPMA F K α X-ray count rates. After prolonged irradiation, the surface region starts to lose halogens and becomes progressively depleted, corresponding with a drop in EPMA count rates. Under normal EPMA operating conditions there is no halogen redistribution in fluorapatite oriented with the c -axis perpendicular to the electron beam, or in chlorapatite. We infer that anionic enrichment results from the migration of halogens away from a center of charge build-up caused by the implantation of electrons from the EPMA beam, assisted by the thermal gradient induced by electron-matter interactions. The process of surface enrichment is best explained by halogen migration through interstitial crystallographic sites in the c -axis channel. This suggests that once the thermal and electric fields are removed, halogens may relax back to their original positions on very long timescales or with sample heating.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...