GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCIENCE BV  (2)
  • European Geophysical Union  (1)
  • 2010-2014  (3)
  • 2013  (3)
Document type
Publisher
Years
  • 2010-2014  (3)
Year
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth and Planetary Science Letters, ELSEVIER SCIENCE BV, 369-37, pp. 86-97, ISSN: 0012-821X
    Publication Date: 2019-07-17
    Description: Boundary scavenging, or the enhanced removal of adsorption-prone elements from the ocean in areas of high particle flux, is an often cited, though not well-quantified, concept used to understand the oceanic distribution of many trace metals. Because 230Th and 231Pa are produced uniformly from uranium decay and removed differentially by scavenging, the process of boundary scavenging can bee lucidated by a more detailed knowledge of their water column distributions. To this end, filtered seawater was collected across the gradients in particle flux which span the subarctic Pacific: in the west during the Innovative North Pacific Experiment (INOPEX) and in the east along LineP. Lateral concentration gradients of dissolved 230Th are small throughout the subarcticPacific at 12 sites of variable particle flux. This contradicts the prediction of the traditional boundary scavenging model. A compilation of water column data from throughout the North Pacific reveals much larger lateral concentration gradients for 230Th between the subarctic North Pacific and subtropical gyre, over lateral gradients in scavenging intensity similar to those found within the subarctic. This reflects a biogeochemical-province aspect to scavenging. Upper water column distributions of 231Pa and 231Pa/230Th ratio are consistent with the influence of scavenging by biogenic opal, while deep waters (〉2.5 km) reveal an additional 231Pa sink possibly related to manganese oxides produced at continental margins or ridge crests.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    European Geophysical Union
    In:  EPIC3EGU General Assembly 2013, Vienna, Austria, 2013-04-07-2013-04-12Vienna, European Geophysical Union
    Publication Date: 2019-07-17
    Description: Diatom assemblages preserved in 16 sediment cores recovered in the eastern Indian, Atlantic and Pacific sectors of the Southern Ocean are used for the reconstruction of the variability of summer sea surface temperature (SSST) and sea ice concentration during the Last Interglacial (LIG) or Marine Isotope Stage 5 (MIS 5). The large coverage of the core sites allows for reconstructions on latitudinal and longitudinal transects across the Southern Ocean and thus for the comparison of the environmental signal evolution in different sedimentary basins of the Southern Ocean. Such information is crucial for the understanding of climate signal propagation in the Southern Ocean and on inter-hemispheric scale. The quantitative temperature and sea ice records are derived with newly established diatom-based transfer functions at millennial to centennial resolution. Stratigraphic age assignment relies on a combination of oxygen isotope stratigraphy, biostratigraphy, core-core correlation using physical, geochemical and microfossil abundance pattern together with a tuning of sediment core signals with climate records in Antarctic ice cores. All records display a rapid transition from glacial (MIS 6) to MIS 5 conditions to reach maximum temperatures in the latest MIS 6/MIS 5 transition (Termination II) and the early LIG attributed to MIS 5.5. The amplitude of the SSST change is up to 5◦C, with generally smaller values in the Pacific sector. During this period Southern Ocean temperature may exceed modern surface temperatures by up to 3◦C and the winter sea ice edge is located south of the modern ice edge. Higher resolution cores display short-term temperature rebounds during the Termination II warming. Such cold rebounds are not discerned in the ice core records. The Southern Ocean warming could be triggered by precessional changes influencing high latitude summer insolation and potentially be accelerated by feedback mechanisms such as the reduction of surface albedo (sea ice), CO2 outgassing of the Southern Ocean and changes in meridional overturning circulation. The new set of data fills a gap in information in the global evolution of Earth climate during the Last Interglacial and will be useful for the testing of numerical modeling results of the last distinctly warmer and higher sea level than present climate period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth and Planetary Science Letters, ELSEVIER SCIENCE BV, 383, pp. 16-25, ISSN: 0012-821X
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...