GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (3)
  • Springer
  • 2010-2014  (3)
  • 1980-1984
  • 1970-1974
  • 2012  (3)
  • 1
    Publication Date: 2012-05-16
    Description: Much is known about the evolution of plant immunity components directed against specific pathogen strains: They show pervasive functional variation and have the potential to coevolve with pathogen populations. However, plants are effectively protected against most microbes by generalist immunity components that detect conserved pathogen-associated molecular patterns (PAMPs) and control the onset of PAMP-triggered immunity. In Arabidopsis thaliana , the receptor kinase flagellin sensing 2 (FLS2) confers recognition of bacterial flagellin (flg22) and activates a manifold defense response. To decipher the evolution of this system, we performed functional assays across a large set of A. thaliana genotypes and Brassicaceae relatives. We reveal extensive variation in flg22 perception, most of which results from changes in protein abundance. The observed variation correlates with both the severity of elicited defense responses and bacterial proliferation. We analyzed nucleotide variation segregating at FLS2 in A. thaliana and detected a pattern of variation suggestive of the rapid fixation of a novel adaptive allele. However, our study also shows that evolution at the receptor locus alone does not explain the evolution of flagellin perception; instead, components common to pathways downstream of PAMP perception likely contribute to the observed quantitative variation. Within and among close relatives, PAMP perception evolves quantitatively, which contrasts with the changes in recognition typically associated with the evolution of R genes.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-12
    Description: In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4 +/– B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2 -cre-mediated deletion of floxed Gata4 ( Gata4 F ) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4 F dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation.
    Print ISSN: 0013-7227
    Topics: Medicine
    Published by Oxford University Press on behalf of The Endocrine Society.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-28
    Description: Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo . Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications. Here, we show that a major modification of H2B in Drosophila melanogaster is the methylation of the N-terminal proline, which increases during fly development. Experiments performed in cultured cells revealed higher levels of H2B methylation when cells are dense, regardless of their cell cycle distribution. We identified dNTMT (CG1675) as the enzyme responsible for H2B methylation. We also found that the level of N-terminal methylation is regulated by dART8, an arginine methyltransferase that physically interacts with dNTMT and asymmetrically methylates H3R2. Our results demonstrate the existence of a complex containing two methyltransferases enzymes, which negatively influence each other’s activity.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...