GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • 2010  (2)
Document type
Years
  • 2010-2014  (2)
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C07001, doi:10.1029/2009JC005605.
    Description: Shoreward propagating, mode 2 nonlinear waves appear sporadically in mooring records obtained off the coast of New Jersey in the summer of 2006. Individual mode 2 packets were tracked between two moorings separated by 1 km; however, packets could not be tracked between moorings separated by greater distances from one another (∼10 km). The inability to track individual packets large distances through the mooring array combined with detailed observations from a ship suggest that these waves are short lived. The evolution of the ship-tracked wave group was recorded using acoustic backscatter, acoustic Doppler current profilers, and turbulence profiling. The leading mode 2 wave quickly changed form and developed a tail of short, small-amplitude mode 1 waves. The wavelength of the mode 1 oscillations agreed with that expected for a copropagating tail on the basis of linear theory. Turbulent dissipation in the mixed layer and radiation of the short mode 1 waves contributed to rapid energy loss in the leading mode 2 wave, consistent with the observed decay rate and short life span of only a few hours. The energy in the leading mode 2 wave was 10–100 times smaller than the energy of mode 1 nonlinear internal waves observed during the experiment; however, the magnitudes of wave-localized turbulent dissipation were similar.
    Description: This work was funded by the Office of Naval Research.
    Keywords: Nonlinear waves ; Mode 2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L08601, doi:10.1029/2010GL042715.
    Description: Comprehensive observations of velocity, density, and turbulent dissipation permit quantification of the nonlinear internal wave (NLIW) contribution to vertical heat flux and lateral mass transport over New Jersey's shelf. The effect of NLIWs on the shelf heat budget was significant. On average, heat flux in NLIWs was 10 times larger than background at the pycnocline depth. NLIWs were present at midshelf 〈10% of the time, yet we estimate that they contributed roughly one−half the heat flux across the pycnocline during the observation period, which was characterized by weak to moderate winds. Lateral transport distances due to the leading 3 waves in NLIW packets were typically inline equation(100 m) but ranged several kilometers. The month-averaged daily onshore transport (per unit alongshelf dimension) by NLIWs is estimated as 0.3 m2s−1. This is comparable to a weak downwelling wind, but sustained over an entire month.
    Description: This work was funded by the Office of Naval Research.
    Keywords: Nonlinear internal waves ; Mass transport ; Heat flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...