GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Deep Sea Research Part I: Oceanographic Research Papers, Elsevier BV, Vol. 57, No. 10 ( 2010-10), p. 1314-1328
    Type of Medium: Online Resource
    ISSN: 0967-0637
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 1500309-7
    detail.hit.zdb_id: 1146810-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Journal of Geophysical Research Vol. 115, No. C7 ( 2010-07-14)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 115, No. C7 ( 2010-07-14)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Geophysical Research Letters Vol. 37, No. 24 ( 2010-12), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 37, No. 24 ( 2010-12), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Eos, Transactions American Geophysical Union Vol. 91, No. 30 ( 2010-07-27), p. 265-265
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 91, No. 30 ( 2010-07-27), p. 265-265
    Abstract: The AGU Council adopted our new Strategic Plan on 7 June 2010 in Washington, D.C. In the past, we tied our planning activities to the 2‐year horizon of elected leadership terms. Our focus was on near‐term objectives with a 1‐ to 2‐year outlook. Planning was heavily driven by headquarters, and participation was limited to a few people.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 91, No. 49 ( 2010-12-07), p. 473-473
    Abstract: El Niño and the Southern Oscillation (ENSO) have profound effects on South American climate. Warm ENSO events (El Niños) and cold ENSO events (La Niñas), which occur on year‐to‐year time scales, are associated with droughts, floods, and other extreme weather events across the continent. Anthropogenic greenhouse gas warming of the planet will also likely have a profound effect on South America, through both gradual shifts in the baseline climate and increases in extreme events, including possible changes in the ENSO cycle. There are indications that climate change may already be having an impact in South America, with temperature trends observed in the Galápagos and in the altiplano of the northern Andes and in the shrinking of tropical mountain glaciers. There has also been a shift in the behavior of El Niño, with an increased tendency for warm sea surface temperature anomalies to be concentrated in the central Pacific rather than in the eastern Pacific during the past 2 decades. These central Pacific (or “Modoki,” which means “similar but different” in Japanese) El Niños have a different signature than eastern Pacific El Niños in terms of teleconnection patterns on weather variability in South America and in terms of effects on marine ecosystems and fisheries along the west coast of the continent. However, the instrumental climate record is relatively short, and many of the observed trends could simply be the result of natural decadal climate variability that is unresolved in observations.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 4 ( 2010-02-15), p. 947-965
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 4 ( 2010-02-15), p. 947-965
    Abstract: Sea surface temperature (SST) in the southwestern tropical Indian Ocean exerts a significant influence on global climate through its influence on the Indian summer monsoon and Northern Hemisphere atmospheric circulation. In this study, measurements from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region is characterized by a shallow mean thermocline (90 m, as measured by the 20°C isotherm) and pronounced seasonal cycles of Ekman pumping and SST (seasonal ranges of −0.1 to 0.6 m day−1 and 26°–29.5°C, respectively). It is found that surface heat fluxes and horizontal heat advection contribute significantly to the seasonal cycle of mixed layer heat storage. The net surface heat flux tends to warm the mixed layer throughout the year and is strongest during boreal fall and winter, when surface shortwave radiation is highest and latent heat loss is weakest. Horizontal heat advection provides warming during boreal summer and fall, when southwestward surface currents and horizontal SST gradients are strongest, and is close to zero during the remainder of the year. Vertical turbulent mixing, estimated as a residual in the heat balance, also undergoes a significant seasonal cycle. Cooling from this term is strongest in boreal summer, when surface wind and buoyancy forcing are strongest, the thermocline ridge is shallow ( & lt;90 m), and the mixed layer is deepening. These empirical results provide a framework for addressing intraseasonal and interannual climate variations, which are dynamically linked to the seasonal cycle, in the southwestern tropical Indian Ocean. They also provide a quantitative basis for assessing the accuracy of numerical ocean model simulations in the region.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 18 ( 2010-09-15), p. 4901-4925
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 18 ( 2010-09-15), p. 4901-4925
    Abstract: The mixed layer heat budget in the tropical Pacific is diagnosed using pentad (5 day) averaged outputs from the Global Ocean Data Assimilation System (GODAS), which is operational at the National Centers for Environmental Prediction (NCEP). The GODAS is currently used by the NCEP Climate Prediction Center (CPC) to monitor and to understand El Niño and La Niña in near real time. The purpose of this study is to assess the feasibility of using an operational ocean data assimilation system to understand SST variability. The climatological mean and seasonal cycle of mixed layer heat budgets derived from GODAS agree reasonably well with previous observational and model-based estimates. However, significant differences and biases were noticed. Large biases were found in GODAS zonal and meridional currents, which contributed to biases in the annual cycle of zonal and meridional advective heat fluxes. The warming due to tropical instability waves in boreal fall is severely underestimated owing to use of a 4-week data assimilation window. On interannual time scales, the GODAS heat budget closure is good for weak-to-moderate El Niños. A composite for weak-to-moderate El Niños suggests that zonal and meridional temperature advection and vertical entrainment/diffusion all contributed to the onset of the event and that zonal advection played the dominant role during decay of the event and the transition to La Niña. The net surface heat flux acts as a damping during the development stage, but plays a critical role in the decay of El Niño and the transition to the following La Niña. The GODAS heat budget closure is generally poor for strong La Niñas. Despite the biases, the GODAS heat budget analysis tool is useful in monitoring and understanding the physical processes controlling SST variability associated with ENSO. Therefore, it has been implemented operationally at CPC in support of NOAA’s ENSO forecasting.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Geophysical Research Letters Vol. 37, No. 14 ( 2010-07), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 37, No. 14 ( 2010-07), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Eos, Transactions American Geophysical Union Vol. 91, No. 47 ( 2010-11-23), p. 443-443
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 91, No. 47 ( 2010-11-23), p. 443-443
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 16 ( 2010-08-15), p. 4375-4394
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 16 ( 2010-08-15), p. 4375-4394
    Abstract: The authors use a new and novel heat balance formalism for the upper 50 m of the Niño-3 region (5°N–5°S, 90°–150°W) to investigate the oceanographic processes underlying interannual sea surface temperature (SST) variations in the eastern equatorial Pacific. The focus is on a better understanding of the relationship between local and remote atmospheric forcing in generating SST anomalies associated with El Niño–Southern Oscillation (ENSO) events. The heat balance analysis indicates that heat advection across 50-m depth and across 150°W are the important oceanic mechanisms responsible for temperature variations with the former being dominant. On the other hand, net surface heat flux adjusted for penetrative radiation damps SST. Jointly, these processes can explain most of interannual variations in temperature tendency averaged over the Niño-3 region. Decomposition of vertical advection across the bottom indicates that the mean seasonal advection of anomalous temperature (the so-called thermocline feedback) dominates and is highly correlated with 20°C isotherm depth variations, which are mainly forced by remote winds in the western and central equatorial Pacific. Temperature advection by anomalous vertical velocity (the “Ekman feedback”), which is highly correlated with local zonal wind stress variations, is smaller with an amplitude of about 40% on average of remotely forced vertical heat advection. These results support those of recent empirical and modeling studies in which local atmospheric forcing, while not dominant, significantly affects ENSO SST variations in the eastern equatorial Pacific.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...