GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
  • 2005  (3)
Material
Language
Years
  • 2005-2009  (3)
Year
  • 2005  (3)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 18 ( 2005-09-15), p. 3739-3758
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 18 ( 2005-09-15), p. 3739-3758
    Abstract: The output from an ocean general circulation model driven by observed surface forcing (1958–97) is used to examine the evolution and relative timing of the different branches of the Pacific Subtropical–Tropical Cells (STCs) at both interannual and decadal time scales, with emphasis on the 1976–77 climate shift. The STCs consist of equatorward pycnocline transports in the ocean interior and in the western boundary current, equatorial upwelling, and poleward flow in the surface Ekman layer. The interior pycnocline transports exhibit a decreasing trend after the mid-1970s, in agreement with observational transport estimates, and are largely anticorrelated with both the Ekman transports and the boundary current transports at the same latitudes. The boundary current changes tend to compensate for the interior changes at both interannual and decadal time scales. The meridional transport convergence across 9°S and 9°N as well as the equatorial upwelling are strongly correlated with the changes in sea surface temperature (SST) in the central and eastern equatorial Pacific. However, meridional transport variations do not occur simultaneously at each longitude, so that to understand the phase relationship between transport and SST variations it is important to consider the baroclinic ocean adjustment through westward-propagating Rossby waves. The anticorrelation between boundary current changes and interior transport changes can also be understood in terms of the baroclinic adjustment process. In this simulation, the pycnocline transport variations appear to be primarily confined within the Tropics, with maxima around 10°S and 13°N, and related to the local wind forcing; a somewhat different perspective from previous studies that have emphasized the role of wind variations in the subtropics.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2005
    In:  Deep Sea Research Part I: Oceanographic Research Papers Vol. 52, No. 5 ( 2005-5), p. 787-813
    In: Deep Sea Research Part I: Oceanographic Research Papers, Elsevier BV, Vol. 52, No. 5 ( 2005-5), p. 787-813
    Type of Medium: Online Resource
    ISSN: 0967-0637
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2005
    detail.hit.zdb_id: 1500309-7
    detail.hit.zdb_id: 1146810-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 20 ( 2005-10-15), p. 4168-4184
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 20 ( 2005-10-15), p. 4168-4184
    Abstract: Recent observations have shown evidence of intraseasonal oscillations (with periods of approximately 1–2 months) in the northern and southern tropical Atlantic trade winds. In this paper, the oceanic response to the observed intraseasonal wind variability is addressed through an analysis of the surface mixed layer heat balance, focusing on three locations in the northwestern tropical Atlantic where in situ measurements from moored buoys are available (14.5°N, 51°W; 15°N, 38°W; and 18°N, 34°W). It is found that local heat storage at all three locations is balanced primarily by wind-induced latent heat loss, which is the same mechanism that is believed to play a dominant role on interannual and decadal time scales in the region. It is also found that the intraseasonal wind speed oscillations are linked to changes in surface wind convergence and convection over the western equatorial Atlantic warm pool. These atmospheric circulation anomalies and wind-induced SST anomalies potentially feed back on one another to affect longer time-scale variability in the region.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...