GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 2004  (2)
Document type
Publisher
Years
  • 2000-2004  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing
    Psychophysiology 41 (2004), S. 0 
    ISSN: 1469-8986
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine , Psychology
    Notes: To assess age-related changes in simple syntactic processing with normal aging, event-related brain potentials (ERPs) elicited by grammatical number violations as individuals read sentences for comprehension were analyzed. Violations were found to elicit a P600 of equal amplitude and latency regardless of an individual's age. Instead, advancing age was associated with a change in the scalp distribution of the P600 effect, being less asymmetric and more frontal (though still with a parietal maximum) in older than younger adults. Our results thus show that the brain's response to simple syntactic violations, unlike those reported for simple binary categorizations and simple semantic violations, is neither slowed nor diminished in amplitude by age. At the same time, the brain's processing of these grammatical number violations did engage at least somewhat different brain regions as a function of age, suggesting a qualitative change rather than any simple quantitative change in speed of processing.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing
    Psychophysiology 41 (2004), S. 0 
    ISSN: 1469-8986
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine , Psychology
    Notes: Signals from eye movements and blinks can be orders of magnitude larger than brain-generated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the experimental designs possible and may impact the cognitive processes under investigation. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG data. BBS is a signal-processing methodology that includes independent component analysis (ICA). In contrast to previously explored ICA-based methods for artifact removal, this method is automated. Moreover, the BSS algorithm described herein can isolate correlated electroocular components with a high degree of accuracy. Although the focus is on eliminating ocular artifacts in EEG data, the approach can be extended to other sources of EEG contamination such as cardiac signals, environmental noise, and electrode drift, and adapted for use with magnetoencephalographic (MEG) data, a magnetic correlate of EEG.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...