GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (7)
  • 1985-1989
  • 2004  (7)
Document type
Keywords
Years
  • 2000-2004  (7)
  • 1985-1989
Year
  • 1
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  64. Jahrestagung der Deutschen Geophysikalischen Gesellschaft (Berlin 2004)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from ~26 km at the Mediterranean to ~39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations con be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transfrom plate boundaries.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Geophysical Journal International
    Publication Date: 2020-02-12
    Description: Teleseismic data observed at seven broad-band stations located in and adjacent to the Sinai subplate were analysed using the receiver function method for estimating the velocity structure of the crust and upper mantle. The receiver function method is based on the analysis and interpretation of P-S converted phases and associated surface multiples that originate at seismic discontinuities beneath the receiver. The main converted P-S phases are from the base of a near-surface sedimentary layer located in the upper crust, at the Moho, in the subMoho upper mantle, at the 410- and 660-km seismic discontinuities. The velocity structure of the crust and the upper mantle varies within the Sinai subplate. A complicated crustal structure is suggested for the Cyprus arc, which marks the northern boundary of the Sinai subplate, with a Moho depth of 28 km. In the area of the Dead Sea Fault (DSF), which marks the eastern boundary of the Sinai subplate, Moho depth increases from north to south from approximately 27 km beneath station MRNI located in northern Israel to approximately 34 km beneath station EIL located north of the Gulf of Aqaba. Away from the DSF, a crustal thickness of 34-36 km is indicated at HITJ located in the Arabian Plate and KEG located in the African Plate. A low-velocity zone (LVZ) beginning at approximately 60-km depth is inferred beneath stations located close to the DSF. This boundary is interpreted as the lithosphere-asthenosphere boundary (LAB). The shallow LAB may be the top of a highly deformed mantle zone and may have facilitated the formation of the DSF some 15 Ma.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  1st General Assembly European Geosciences Union (Nice, France 2004)
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: In the deep crust, temperature, which is among the key parameters controlling lithospheric dynamics, is inferred by extrapolation from the surface using several assumptions that may fail in regions of active tectonics and fluid migration. In the rare case that temperatures of 700 °C or higher are exceeded in the upper and middle continental crust composed of quartz-rich felsic rocks, the alpha-beta quartz transition (ABQT) will occur, generating a measurable seismic signature and offering the possibility for precisely estimating temperature from the known ABQT phase diagram. Here it is shown that all expected seismic features of the ABQT are met by the boundary between the upper and middle crust below the INDEPTH III profile in central Tibet. This finding implies that a temperature of 700 °C is achieved at a depth of 18 km under the southern Qiangtang block, which agrees with the depth to the top of a high electrical conductivity anomaly, likely representing partially melted crust. To the south in the northern Lhasa block, the ABQT is at 32 km depth, corresponding to a temperature of 800 °C. It thus appears that this seismic boundary representing the ABQT is the result of recent geologic processes rather than being a lithologic boundary.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: Regional seismic tomography provides valuable information on the structure of shields, thereby gaining insight to the formation and stabilization of old continents. Fennoscandia (known as the Baltic Shield for its exposed part) is a composite shield for which the last recorded tectonic event is the intrusion of the Rapakivi granitoids around 1.6 Ga. A seismic experiment carried out as part of the European project Svecofennian-Karelia-Lapland-Kola (SVEKALAPKO) was designed to study the upper mantle of the Finnish part of the Baltic Shield, especially the boundary between Archean and Proterozoic domains. We invert the fundamental mode Rayleigh waves to obtain a three-dimensional shear wave velocity model using a ray-based method accounting for the curvature of wave fronts. The experiment geometry allows an evaluation of lateral variations in velocities down to 150 km depth. The obtained model exhibits variations of up to ±3% in S wave velocities. As the thermal variations beneath Finland are very small, these lateral variations must be caused by different rock compositions. The lithospheres beneath the Archean and Proterozoic domains are not noticeably different in the S wave velocity maps. A classification of the velocity profiles with depth yields four main families and five intermediate regions that can be correlated with surface features. The comparison of these profiles with composition-based shear wave velocities implies both lateral and vertical variations of the mineralogy.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...