GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (3)
  • 2000-2004  (3)
  • 2002  (3)
Document type
Years
  • 2000-2004  (3)
Year
  • 1
    Publication Date: 2017-06-26
    Description: Two cores recovered from the Discovery Basin and one reference core from a location outside the Basin were investigated in detail in order to decipher the influence of hypersaline brines on sediment geochemistry. The cores contain a tephra layer (presumable Y-5) and carbonate microfossils which permit a tentative chrono- and lithostratigraphic correlation. A layer containing up to 60 wt% biogenic opal and 6.6 wt% organic carbon was identified in one basin core, which probably represents the best preserved example of eastern Mediterranean sapropel S-1. The basin is filled with a concentrated solution of MgCl2 which is enriched in dissolved sulfate and has the highest salinity ever encountered in the marine environment. Pore water profiles demonstrate that this brine dissolves sedimentary calcite to form secondary carbonate- and sulfate-bearing minerals. Of these, dolomite, magnesite and gypsum were identified by X-ray diffractometry; thermodynamic calculations show that these phases form in equilibrium with the anomalous brine composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (∼1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative δ13C values of these carbonates (〉−43.5‰ PDB) indicate methane as major carbon source; δ18O values between 4.04 and 5.88‰ PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to 〉49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO42- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (δ34S: 21.0–38.6‰ CDT; δ18O: 9.0–17.6‰ SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with ‘normal’ seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-03
    Description: Extensive deposits of methane hydrate characterize Hydrate Ridge in the Cascadia margin accretionary complex. The ridge has a northern peak at a depth of about 600 m, which is covered by extensive carbonate deposits, and an 800 m deep southern peak that is predominantly sediment covered. Samples collected with benthic instrumentation and from Alvin push cores reveal a complex hydrogeologic system where fluid and methane fluxes from the seafloor vary by several orders of magnitude at sites separated by distances of only a few meters. We identified three distinct active fluid regimes at Hydrate Ridge. The first province is represented by discrete sites of methane gas ebullition, where the bulk of the flow occurs through channels in which gas velocities reach 1 m s−1. At the northern summit of the ridge the gas discharge appears to be driven by pressure changes on a deep gas reservoir, and it is released episodically at a rate of ∼6×104 mol day−1 following tidal periodicity. Qualitative observations at the southern peak suggest that the gas discharge there is driven by more localized phenomena, possibly associated with destabilization of massive gas hydrate deposits at the seafloor. The second province is characterized by the presence of extensive bacterial mats that overlay sediments capped with methane hydrate crusts, both at the northern and southern summits. Here fluid typically flows out of the sediments at rates ranging from 30 to 100 cm yr−1. The third province is represented by sites colonized by vesicomyid clams, where bottom seawater flows into the sediments for at least some fraction of the time. Away from the active gas release sites, fluid flows calculated from pore water models are in agreement with estimates using published flowmeter data and numerical model calculations. Methane fluxes out of mat-covered sites range from 30 to 90 mmol m−2 day−1, whereas at clam sites the methane flux is less than 1 mmol m−2 day−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...