GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
  • 1997  (4)
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The diadenosine polyphosphates, diadenosine tetraphosphate and diadenosine pentaphosphate (Ap5A), can activate an ionotropic dinucleotide receptor that induces Ca2+ transients into synaptosomes prepared from rat brain. This receptor, also termed the P4 purinoceptor, is sensitive only to adenine dinucleotides and is insensitive to ATP. Studies on the modulatory role of protein kinase A (PKA), protein kinase C (PKC), and protein phosphatases on the response of diadenosine polyphosphate receptors were performed by measuring the changes in the intracellular Ca2+ levels with fura-2. Activation and inhibition of PKA were carried out by means of forskolin and the PKA inhibitory peptide (PKA-IP), respectively. The Ap5A response was inhibited by forksolin to 35% of control values, but PKA-IP induced an increase of 37%. The effect of PKC activation was similar to that observed for PKA. PKC stimulation with phorbol 12,13-dibutyrate produced an inhibition of 67%, whereas the PKC inhibitors staurosporine and PKC inhibitory peptide enhanced the responses elicited by Ap5A to 40% in both cases. Protein phosphatase inhibitors diminished the responses elicited by Ap5A to 17% in the case of okadaic acid, to 50% for microcystin, and to 45% in the case of cyclosporin A. Thus, the activity of dinucleotide receptors in rat brain synaptosomes appears to be modulated by phosphorylation/dephosphorylation. These processes could be of physiological significance in the control of transmitter release from neurons that are postsynaptic to nerves that release diadenosine polyphosphates.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0178-515X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  This paper presents a kinetic study of two yeasts growing in pure and mixed batch cultures. Two winemaking strains were used: S. cerevisiae K1 possessing the K2 killer character and S. cerevisiae 522D sensitive to the K2 killer toxin. Initially the kinetics of growth of the two strains were analysed in pure culture. In this case, the kinetic profiles of biomass production have shown that the growth rate of the K1 strain is slightly superior to the 522D strain. During the fermentation, the viability for both populations was higher than 90%. Fermentations in mixed culture with an initial percentage in killer strain of 5 and 10% with respect to the total population were carried out. The results showed a more important decrease in the percentage of total viable yeasts when the initial concentration of killer yeast increased. However, the kinetic profiles of total biomass (killer plus sensitive yeasts) were very similar for both fermentations. A mathematical model was proposed to simulate the microbial growth of the killer and sensitive strain developing in pure and mixed cultures. This mathematical model consists in three main reactions: the evolution of the killer toxin in the culture medium, the duplication and the mortality rates for each microbial population. The results of the simulation appeared in agreement with the experimental data.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 14 (1997), S. 83-87 
    ISSN: 1573-0972
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract This paper presents a kinetic study of the dynamics of the population of two Saccharomyces cerevisiae strains (designated K1 and 522D) in mixed culture. These two strains are commonly used in wine making. The K1 strain (killer yeast) secretes a glycoprotein (killer toxin) which causes the death of the 522D strain (sensitive yeast). Initially, the mixed cultures were realized in batch fermentations. Initial concentrations of killer yeast were 5 and 10% of the total population. The influence of the killer strain on the sensitive cultures was measured in comparison with a reference fermentation. The reference fermentation was inoculated only with the sensitive strain. Results show that an initial concentration of 10% of killer strain affects the microbial population balance and the rate of ethanol production. However the fermentation was only slightly disturbed when the proportion of killer to sensitive yeast at the beginning of mixed culture was 5%. To achieve total displacement by the killer yeast at low concentrations, the mixed cultures were carried out in a continuous system. The results obtained in continuous fermentations with the same strains have shown that a level of contamination as low as 0.8% of killer strain was sufficient to completely displace the original sensitive population after 150 h incubation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 68 (1997), S. 195-201 
    ISSN: 0268-2575
    Keywords: Saccharomyces cerevisiae ; alcoholic fermentation ; killer yeasts ; sensitive yeasts ; mathematical model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: --This paper deals with the study of the kinetics of batch fermentations for a sensitive strain of S. cerevisiae growing in a culture medium containing K2 killer protein. The inhibition due to the killer toxin was measured by the reduction of the viable biomass, ethanol production and glucose consumption compared with a reference fermentation. The reference culture was run under the same conditions, but using a heat-denatured solution of killer protein. Results showed a decrease of the viable population of 67·8% after 15 h incubation. The fermentation time for the total consumption of the glucose was significantly affected by the presence of the killer toxin. The specific rate of ethanol production was also affected during the fermentation. However, the yields of ethanol and biomass were very similar for both fermentations. A kinetic mathematical model was proposed to explain the dynamics of the S. cerevisiae 522D growth in the presence of the K2 killer protein. The results of the suggested simulation were in agreement with the experimental data. © 1997 SCI.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...