GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004
  • 1995-1999  (3)
  • 1985-1989
  • 1995  (3)
Document type
Years
  • 2000-2004
  • 1995-1999  (3)
  • 1985-1989
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 131 (1995), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The mechanisms that determine chromosome structure and chromosome partitioning in bacteria are largely unknown. Here we discuss two hypotheses: (i) the structure of the Escherichia coli nucleoid is determined by DNA binding proteins and DNA supercoiling, representing a compaction force on the one hand, and by the coupled transcription/translation/ translocation of plasma membrane and cell wall proteins, representing an expansion force on the other hand; (ii) the two forces are important for the partitioning process of chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of hepato-biliary-pancreatic surgery 2 (1995), S. 249-254 
    ISSN: 1436-0691
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 27 (1995), S. 543-554 
    ISSN: 1573-6881
    Keywords: Oxidative phosphorylation ; respiration ; ATP ; fluxes ; Metabolic Control Analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Strains carrying deletions in theatp genes, encoding the H+-ATPase, were unable to grow on nonfermentable substrates such as succinate, whereas with glucose as the substrate the growth rate of anatp deletion mutant was surprisingly high (some 75–80% of wild-type growth rate). The rate of glucose and oxygen consumption of these mutants was increased compared to the wild-type rates. In order to analyze the importance of the H+-ATPase at its physiological level, the cellular concentration of H+-ATPase was modulated around the wild-type level, using genetically manipulated strains. The control coefficient by the H+-ATPase with respect to growth rate and catabolic fluxes was measured. Control on growth rate was absent at the wild-type concentration of H+-ATPase, independent of whether the substrate for growth was glucose or succinate. Control by the H+-ATPase on the catabolic fluxes, including respiration, was negative at the wild-type H+-ATPase level. Moreover, the turnover number of the individual H+-ATPase enzymes increased as the H+-ATPase concentration was lowered. The negative control by the H+-ATPase on catabolism may thus be involved in a homeostatic control of ATP synthesis and, to some extent, explain the zero control by the H+-ATPase onE. coli growth rate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...