GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ATP inhibition  (1)
  • Collagen metabolism  (1)
  • Enzyme characteristics  (1)
  • Springer  (3)
  • American Heart Association (AHA)
  • 2010-2014
  • 1995-1999  (3)
  • 1970-1974
  • 1955-1959
  • 1995  (3)
Document type
Keywords
Publisher
  • Springer  (3)
  • American Heart Association (AHA)
Years
  • 2010-2014
  • 1995-1999  (3)
  • 1970-1974
  • 1955-1959
Year
  • 1995  (3)
  • 1
    ISSN: 1432-1440
    Keywords: Callus ; Osteoblast ; Collagen metabolism ; Osteocalcin ; Parathyroid hormone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We compared the expression of osteoblastic markers in cultured human cells isolated from fracture calluses of various histological states of development with that in cells from adult and fetal bone. Adult osteoblasts and all callus cells produced almost exclusively type I collagen, whereas fetal osteoblasts produced also considerable amounts of type III collagen in vitro. 1,25-Dihydroxyvitamin D3 induced the synthesis of osteocalcin in all bone and callus cells but to varying extents. Fetal bone cells and early-stage callus cells synthesized less than 10% the amount of osteocalcin produced by adult bone cells. Late-stage callus cells produced intermediate levels of osteocalcin. Fetal bone cells and early-stage callus cells responded to parathyroid hormone with a less pronounced increase in intracellular cAMP than did adult bone cells. Late-stage callus cells showed the best response to parathyroid hormone. The activity of alkaline phosphatase was highest in fetal bone cells. These observations show that cells isolated from fetal bone and from fracture callus tissues express a pattern of markers clearly relating them to the osteoblastic lineage. On the basis of the different patterns of osteoblastic markers expressed in vitro we conclude that functionally distinct subtypes of osteoblasts do exist in different mineralized tissues and at different developmental stages.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 165 (1995), S. 46-55 
    ISSN: 1432-136X
    Keywords: Citrate synthase ; Enzyme characteristics ; Temperature adaptation ; Isopod crustacea ; Euphausiid crustacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The characteristics and properties chromatographically purified citrate synthase from the euphausiids Euphausia superba (Antarctica) and Meganyctiphanes norvegica (Scandinavian Kattegat and Mediterranean Sea) and from the isopods Serolis polita (Antarctica) and Idotea baltica (Baltic Sea) were used to elucidate biochemical mechanisms of temperature adaptation. Additionally, maintenance experiments were carried out on the euphausiids to determine mechanisms of short term acclimation. Temperature optima (between 37 and 45°C) were unrelated to genotypic cold adaptation, but the activation energy of the Antarctic krill E. superba (10.9 kJ · mol-1) was only a quarter of that in other species (41.8–45.1 kJ · mol-1). The minima of apparent Michaelis constants (total range: 4–20 μmol · 1-1 oxaloacetate; 7–45 μmol · 1-1 acetyl-coenzyme A) showed no relation to natural conditions, and no distinct pH optimum occurred at ambient temperatures. In contrast, apparent Michaelis constants and specific enzyme activities were related to maintenance temperatures in M. norvegica, but not in E. superba. The differences between M. norvegica and E. superba can be interpreted as adaptations to the changes in ambient temperature with regard to the respective steno- and eurythermic tolerances of these crustaceans.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 165 (1995), S. 56-61 
    ISSN: 1432-136X
    Keywords: Citrate synthase ; Enzyme regulation ; Temperature adaptation ; ATP inhibition ; Crustacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Citrate synthase is a regulatory enzyme of the energy metabolism pathway controlling the citric acid cycle. It was studied in order to determine modes of enzyme regulation with regard to the life-style of the investigated species. Citrate synthase from crustaceans with different life-styles were compared: the pelagic euphausiids Euphausia superba from the Antarctic and Meganyctiphanes norvegica from the Scandinavian Kattegat and the Mediterranean were compared to the benthic isopods Serolis polita from the Antarctic and Idotea baltica from the Baltic. Citrate synthase was partly purified chromatographically and the influence of adenosine 5′-triphosphate on enzyme activity was examined. Mechanisms of inhibition and inhibitor constants were determined. Two different mechanisms of enzyme regulation by ATP were found. Citrate synthase from isopods was only competitively inhibited, while citrate synthase from euphausiids showed not only competitive inhibition but also activation by low concentrations of ATP. This activation is equivalent to the reversed methanism of uncompetitive inhibition. The ecophysiological relevances of the coupling of these mechanisms are discussed. The degree of competitive inhibition was different in the two groups of investigated crustaceans. Inhibitor constants were similar within the euphausiids but not in isopods, which showed higher or lower inhibition depending on the climatic zone: the colder the ambient temperature the lower the ATP inhibition. A possible mechanism of temperature adaptation through effects of varying inhibition constants is concluded.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...