GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • 1990-1994  (2)
  • 1991  (2)
Document type
Publisher
Years
  • 1990-1994  (2)
Year
  • 1
    Publication Date: 2018-03-02
    Description: Stable isotopes in benthic foraminifera from Pacific sediments are used to assess hypotheses of systematic shifts in the depth distribution of oceanic nutrients and carbon during the ice ages. The carbon isotope differences between ∼1400 and ∼3200 m depth in the eastern Pacific are consistently greater in glacial than interglacial maxima over the last ∼370 kyr. This phenomenon of “bottom heavy” glacial nutrient distributions, which Boyle proposed as a cause of Pleistocene CO2 change, occurs primarily in the 1/100 and 1/41 kyr−1 “Milankovitch” orbital frequency bands but appears to lack a coherent 1/23 kyr−1 band related to orbital precession. Averaged over oxygen-isotope stages, glacial δ13C gradients from ∼1400 to ∼3200 m depth are 0.1‰ greater than interglacial gradients. The range of extreme shifts is somewhat larger, 0.2 to 0.5‰. In both cases, these changes in Pacific δ13C distributions are much smaller than observed in shorter records from the North Atlantic. This may be too small to be a dominant cause of atmospheric pCO2 change, unless current models underestimate the sensitivity of pCO2 to nutrient redistributions. This dampening of Pacific relative to Atlantic δ13C depth gradient favors a North Atlantic origin of the phenomenon, although local variations of Pacific intermediate water masses can not be excluded at present.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-02
    Description: Benthic (Uvigerina spp., Cibicidoides spp., Gyroidinoides spp.) and planktonic (N. pachyderma sinistral, G. bulloides) stable isotope records from three core sites in the central Gulf of Alaska are used to infer mixed-layer and deepwater properties of the late glacial Subarctic Pacific. Glacial-interglacial amplitudes of the planktonic δ18O records are 1.1–1.3‰, less than half the amplitude observed at core sites at similar latitudes in the North Atlantic; these data imply that a strong, negative δw anomaly existed in the glacial Subarctic mixed layer during the summer, which points to a much stronger low-salinity anomaly than exists today. If true, the upper water column in the North Pacific would have been statically more stable than today, thus suppressing convection even more efficiently. This scenario is further supported by vertical (i.e., planktic versus benthic) δ18O and δ13C gradients of 〉1‰, which suggest that a thermohaline link between Pacific deep waters and the Subarctic Pacific mixed layer did not exist during the late glacial. Epibenthic δ13C in the Subarctic Pacific is more negative than at tropical-subtropical Pacific sites but similar to that recorded at Southern Ocean sites, suggesting ventilation of the deep central Pacific from mid-latitude sources, e.g., from the Sea of Japan and Sea of Okhotsk. Still, convection to intermediate depths could have occurred in the Subarctic during the winter months when heat loss to the atmosphere, sea ice formation, and wind-driven upwelling of saline deep waters would have been most intense. This would be beyond the grasp of our planktonic records which only document mixed-layer temperature-salinity fields extant during the warmer seasons. Also we do not have benthic isotope records from true intermediate water depths of the Subarctic Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...