GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
  • 1990  (1)
Document type
Publisher
Years
  • 1990-1994  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 17 (1990), S. 45-51 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Data systematization using the constraints from the equation $$Cp = Cv + \alpha _P {}^2V_T K_T T$$ where C p, C v, α p, K T and V are respectively heat capacity at constant pressure, heat capacity at constant volume, isobaric thermal expansion, isothermal bulk modulus and molar volume, has been performed for tungsten and MgO. The data are $$K_T (W) = 1E - 5/(3.1575E - 12 + 1.6E - 16T + 3.1E - 20T^2 )$$ $$\alpha _P (W) = 9.386E - 6 + 5.51E - 9T$$ $$C_P (W) = 24.1 + 3.872E - 3T - 12.42E - 7T^2 + 63.96E - 11T^3 - 89000T^{ - 2} $$ $$K_T (MgO) = 1/(0.59506E - 6 + 0.82334E - 10T + 0.32639E - 13T^2 + 0.10179E - 17T^3 $$ $$\alpha _P (MgO) = 0.3754E - 4 + 0.7907E - 8T - 0.7836/T^2 + 0.9148/T^3 $$ $$C_P (MgO) = 43.65 + 0.54303E - 2T - 0.16692E7T^{ - 2} + 0.32903E4T^{ - 1} - 5.34791E - 8T^2 $$ For the calculation of pressure-volume-temperature relation, a high temperature form of the Birch-Murnaghan equation is proposed $$P = 3K_T (1 + 2f)^{5/2} (1 + 2\xi f)$$ Where $$K_T = 1/(b_0 + b_1 T + b_2 T^2 + b_3 T^3 )$$ $$f = (1/2)\{ [V(1,T)/V(P,T)]^{2/3} - 1\} $$ $$\xi = ({3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-\nulldelimiterspace} 4})[K'_0 + K'_1 \ln ({T \mathord{\left/ {\vphantom {T {300}}} \right. \kern-\nulldelimiterspace} {300}}) - 4]$$ where in turn $$V(1,T) = V_0 [\exp (\int\limits_{300}^T {\alpha dT)]} $$ . The temperature dependence of the pressure derivative of the bulk modulus (K′1) is estimated by using the shock-wave data. For tungsten the data are K′0 = 3.5434, K′1 = 0.032; for MgO K′0 = 4.17 and K′1 = 0.1667. For calculating the Gibbs free energy of a solid at high pressure and at temperatures beyond that of melting at 1 atmosphere, it is necessary to define a high-temperature reference state for the fictive solid.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...