GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (1)
  • 1990-1994  (1)
  • 2022  (1)
  • 1990  (1)
Document type
Language
Years
Year
  • 2022  (1)
  • 1990  (1)
  • 1994  (1)
  • 1
    Publication Date: 2022-12-07
    Description: Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.
    Description: Plain Language Summary; Tropical Instability Waves (TIWs) are clear in satellite measurements of sea surface temperature as horizontal undulations with wavelength of the order of 1,000 km in equatorial regions of both Atlantic and Pacific Oceans. TIWs are characterized by their distinctive upper‐ocean meridional velocity structure. TIWs amplify vertical shear and thus contribute to the generation of turbulence which in turn leads to the mixing of heat and freshwater downward into the deeper ocean. In this study we show that the prevailing southerly winds in the central equatorial Atlantic drive near‐surface northward and subsurface southward flows, which are superposed on the meridional TIW velocity field. The strength of this wind driven cell is linked to the seasonal cycle of the northward component of the trade winds, peaking in boreal fall when TIWs reach their maximum amplitude. The overturning cell affects the vertical structure of the meridional velocity field and thus has impact on the generation of current shear and turbulence. We show that the overturning reduces/enhances shear during northward/southward TIW flow, an asymmetry that is consistent with independent measurements showing asymmetric mixing.
    Description: Key Points: Composites of Tropical Instability Waves at 0°N, 23°W show a surface (subsurface) velocity maximum during northward (southward) phases. Meridional wind stress forces a seasonally‐varying, shallow cross‐equatorial overturning cell‐the Equatorial Roll. The superposition of Tropical Instability Waves and Equatorial Roll causes asymmetric mixing during north‐ and southward phases.
    Description: EU H2020
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: US NSF
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: National Oceanic and Atmospheric Administration http://dx.doi.org/10.13039/100000192
    Description: National Academy of Sciences http://dx.doi.org/10.13039/100000209
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.pangaea.de/10.1594/PANGAEA.941042
    Description: https://www.pmel.noaa.gov/tao/drupal/disdel/
    Keywords: ddc:551.5 ; tropical instability waves ; equatorial Atlantic ; equatorial roll ; moored velocity data ; ocean mixing ; ocean observations
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-23
    Description: The ECMWF-T21 atmospheric GCM is forced by observed near-global SST from January 1970 to December 1985. Its response in low level winds and surface wind stress over the Pacific Ocean is compared with various observations. The time dependent SST clearly induces a Southern Oscillation (SO) in the model run which is apparent in the time series of all variables considered. The phase of the GCM SO is as observed, but its low frequency variance is too weak and is mainly confined to the western Pacific. Because of the GCM's use as the atmospheric component in a coupled ocean-atmosphere model, the response of an equatorial oceanic primitive equation model to both the modeled and observed wind stress is examined. The ocean model responds to the full observed wind stress forcing in a manner almost identical to that when it is forced by the first two low frequency EOFs of the observations only. These first two EOFs describe a regular eastward propagation of the SO signal from the western Pacific to the central Pacific within about a year. The ocean model's response to the modeled wind stress is too weak and similar to the response when the observed forcing is truncated to the first EOF only. In other words, the observed SO appears as a sequence of propagating patterns but the simulated SO as a standing oscillation. The nature of the deviation of the simulated wind stress from observations is analyzed by means of Model Output Statistics (MOS). It is shown that a MOS-corrected simulated wind stress, if used to force an ocean GCM, leads to a significant enhancement of low frequency SST variance, which is most pronounced in the western Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...