GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999
  • 1985-1989  (2)
  • 1987  (2)
Document type
Publisher
Years
  • 1995-1999
  • 1985-1989  (2)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 56 (1987), S. 209-215 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract The time constant of movement detectors in the fly visual system has been proposed to adapt in response to moving stimuli (de Ruyter van Steveninck et al. 1986). The objective of the present study is to analyse, whether this adaptation can be induced as well, if the luminance of a stationary uniform field is modulated in time. The experiments were done on motion-sensitive wide-field neurones of the lobula plate, the posterior part of the third visual ganglion of the blowfly, calliphora erythrocephala. These cells are assumed to receive input from large retinotopic arrays of movement detectors. In order to demonstrate that our results concern the properties of the movement detectors rather than those of a particular wide-field cell we recorded from two different types of them, the H1- and the HSE-cell. Both cell types respond to a brief movement stimulus in their preferred direction with a transient excitation. This response decays about exponentially. The time constant of this decay reflects, in a first approximation, the time constant of the presynaptic movement detectors. It was determined after prestimulation of the cell by the following stimuli: (a) periodic stationary grating; (b) uniform field, the intensity of which was modulated sinusoidally in time (flicker stimulation); (c) periodic grating moving front-to-back; (d) periodic grating moving back-to-front. The decay of the response is significantly faster not only after movement but also after flicker stimulation as compared with pre-stimulation with a stationary stimulus. This is interpreted as an adaptation of the movement detector's time constant. The finding that flicker stimulation also leads to an adaptation shows that movement is not necessary for this process. Instead the adaptation of the time constant appears to be governed mainly by the temporal modulation (i.e., contrast frequency) of the signal in each visual channel.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract Dynamic aspects of the computation of visual motion information are analysed both theoretically and experimentally. The theoretical analysis is based on the type of movement detector which has been proposed to be realized in the visual system of insects (e.g. Hassenstein and Reichardt 1956; Reichardt 1957, 1961; Buchner 1984), but also of man (e.g. van Doorn and Koenderink 1982a, b; van Santen and Sperling 1984; Wilson 1985). The output of both a single movement detector and a one-dimensional array of detectors is formulated mathematically as a function of time. The resulting movement detector theory can be applied to a much wider range of moving stimuli than has been possible on the basis of previous formulations of the detector output. These stimuli comprise one-dimensional “smooth” detector input functions, i.e. functions which can be expanded into a time-dependent convergent Taylor series for any value of the spatial coordinate. The movement detector response can be represented by a power series. Each term of this series consists of one exclusively time-dependent component and of another component that depends, in addition, on the properties of the pattern. Even the exclusively time-dependent components of the movement detector output are not solely determined by the stimulus velocity. They rather depend in a non-linear way on the weighted sum of the instantaneous velocity and all its higher order time derivatives. The latter point represents another reason — not discussed so far in the literature — that movement detectors of the type analysed here do not represent pure velocity sensors. The significance of this movement detector theory is established for the visual system of the fly. This is done by comparing the spatially integrated movement detector response with the functional properties of the directionally-selective motion-sensitive. Horizontal Cells of the third visual ganglion of the fly's brain. These integrate local motion information over large parts of the visual field. The time course of the spatially integrated movement detector response is about proportional to the velocity of the stimulus pattern only as long as the pattern velocity and its time derivatives are sufficiently small. For large velocities and velocity changes of the stimulus pattern characteristic deviations of the response profiles from being proportional to pattern velocity are predicted on the basis of the detector theory developed here. These deviations are clearly reflected in the response of the wide-field Horizontal Cells, thus, providing very specific evidence that the movement detector theory developed here can be applied to motion detection in the fly. The characteristic dynamic features of the theoretically predicted and the experimentally determined cellular responses are exploited to estimate the time constant of the movement detector filter.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...