GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 9, No. 10 ( 2021-10-01), p. 1141-1157
    Abstract: The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD1-mediated, avidity-driven IL2/15 receptor stimulation to PD1+ tumor-infiltrating lymphocytes (TIL) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1–IL15m, demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1–IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1–IL15m preferentially targeted CD8+ TILs and single-cell RNA-sequencing analyses revealed that anti-mPD1–IL15m treatment induced the expansion of an exhausted CD8+ TIL cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1–IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1–IL15m on primary human TILs from patients with cancer was also evaluated. Anti-hPD1–IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, our findings showed that anti-PD1–IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD1+ TILs. See related Spotlight by Felices and Miller, p. 1110.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: British Journal of Cancer, Springer Science and Business Media LLC, Vol. 127, No. 4 ( 2022-09-01), p. 649-660
    Abstract: Immunotherapy with immune checkpoint inhibitors (ICIs) is being explored to improve cholangiocarcinoma (CCA) therapy. However, it remains difficult to predict which ICI will be effective for individual patients. Therefore, the aim of this study is to develop a co-culture method with patient-derived CCA organoids and immune cells, which could represent anti-cancer immunity in vitro. Methods CCA organoids were co-cultured with peripheral blood mononuclear cells or T cells. Flow cytometry, time-lapse confocal imaging for apoptosis, and quantification of cytokeratin 19 fragment (CYFRA) release were applied to analyse organoid and immune cell behaviour. CCA organoids were also cultured in immune cell-conditioned media to analyse the effect of soluble factors. Results The co-culture system demonstrated an effective anti-tumour organoid immune response by a decrease in live organoid cells and an increase in apoptosis and CYFRA release. Interpatient heterogeneity was observed. The cytotoxic effects could be mediated by direct cell–cell contact and by release of soluble factors, although soluble factors only decreased viability in one organoid line. Conclusions In this proof-of-concept study, a novel CCA organoid and immune cell co-culture method was established. This can be the first step towards personalised immunotherapy for CCA by predicting which ICIs are most effective for individual patients.
    Type of Medium: Online Resource
    ISSN: 0007-0920 , 1532-1827
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2002452-6
    detail.hit.zdb_id: 80075-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...