GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: PROTEOMICS, Wiley, Vol. 18, No. 8 ( 2018-04)
    Abstract: Posttranslational histone tail modifications are known to play a role in leukemogenesis and are therapeutic targets. A global analysis of the level and patterns of expression of multiple histone‐modifying proteins (HMP) in acute myeloid leukemia (AML) and the effect of different patterns of expression on outcome and prognosis has not been investigated in AML patients. Here we analyzed 20 HMP by reverse phase protein array (RPPA) in a cohort of 205 newly diagnosed AML patients. Protein levels were correlated with patient and disease characteristics, including survival and mutational state. We identified different protein clusters characterized by higher ( more on) or lower ( more off) expression of HMP, relative to normal CD34+ cells. On state of HMP was associated with poorer outcome compared to normal ‐like and a more off state. FLT3 mutated AML patients were significantly overrepresented in the more on state. DNA methylation related mutations showed no correlation with the different HMP states. In this study, we demonstrate for the first time that HMP form recurrent patterns of expression and that these significantly correlate with survival in newly diagnosed AML patients.
    Type of Medium: Online Resource
    ISSN: 1615-9853 , 1615-9861
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2037674-1
    detail.hit.zdb_id: 2032093-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 3 ( 2022-03), p. 712-722
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 807030-1
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 137, No. 8 ( 2021-02-25), p. 1050-1060
    Abstract: Bortezomib (BTZ) was recently evaluated in a randomized phase 3 clinical trial by the Children’s Oncology Group (COG) that compared standard chemotherapy (cytarabine, daunorubicin, and etoposide [ADE]) vs standard therapy with BTZ (ADEB) for de novo pediatric acute myeloid leukemia (AML). Although the study concluded that B TZ did not improve outcome overall, we examined patient subgroups benefiting from BTZ-containing chemotherapy using proteomic analyses. The proteasome inhibitor BTZ disrupts protein homeostasis and activates cytoprotective heat shock responses. Total heat shock factor 1 (HSF1) and phosphorylated HSF1 (HSF1-pSer326) were measured in leukemic cells from 483 pediatric patients using reverse phase protein arrays. HSF1-pSer326 phosphorylation was significantly lower in pediatric AML compared with CD34+ nonmalignant cells. We identified a strong correlation between HSF1-pSer326 expression and BTZ sensitivity. BTZ significantly improved outcome of patients with low-HSF1-pSer326 with a 5-year event-free survival of 44% (ADE) vs 67% for low-HSF1-pSer326 treated with ADEB (P = .019). To determine the effect of HSF1 expression on BTZ potency in vitro, cell viability with HSF1 gene variants that mimicked phosphorylated (S326A) and nonphosphorylated (S326E) HSF1-pSer326 were examined. Those with increased HSF1 phosphorylation showed clear resistance to BTZ vs those with wild-type or reduced HSF1-phosphorylation. We hypothesize that HSF1-pSer326 expression could identify patients who benefit from BTZ-containing chemotherapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 35-36
    Abstract: INTRODUCTION: Pediatric acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are heterogeneous diseases mediated by changes in protein expression. As most chemotherapeutic agents target proteins, and because overall survival of pediatric AML is far inferior to both pre-B and T-ALL, we aimed to compare the proteomic landscape of pediatric T-ALL and AML, with the goal of determining common AML-T-ALL pathways that are potentially targetable with novel agents. METHODS: Reverse phase protein arrays (RPPA) analysis was used to measure protein expression in 858 acute leukemia samples (358 T-ALL and 500 AML, 723 pediatric ( & lt; 18 yrs.), 135 adults (≥18 yrs.)) and 61 normal CD34+ samples using 270 validated antibodies. Expression levels were normalized against CD34+ cells. Proteins were allocated into 30 functionally related subgroups (Protein Functional Group (PFG)). A progeny clustering algorithm was applied to each PFG to search for strong correlations between proteins and to identify an optimal number of Protein Clusters (PC). Block clustering identified PC that recurrently co-occurred together (Protein Constellation (CON)) and patients that expressed similar combination of CON were defined as Protein Signature (SIG). Proteins that were differentially expressed were identified using the Student's t-test or ANOVA, with a Bonferroni adjusted p-value (0.05/ 270 = 0.00019)). RESULTS: Of the 270 analyzed proteins, 131 proteins (49%) were differentially expressed between T-ALL and AML; 60 were higher in T-ALL, 71 in AML. Similar to our previous analysis in adult AML and ALL, cell cycle regulators (CDKN1A, CDKN1B) and 2 of the 5 histone marks (H3K36Me3 & H3K4Me3) were higher expressed in T-ALL compared to AML. Heat shock proteins (HSP90AA1_B1, HSPA1A_L, HSPB1 and HSPB1-pSer82) were higher in AML as well as translation proteins EIF2S1, EIF4E and EIF4EBP1 and ribosomal proteins RPS6-pSer235_236 and RPS6KB1, while expression of the translation inhibitory proteins EIF2S1-pSer51 and EIF2AK2-pThr451 was lower in AML compared to T-ALL. Next, cluster analysis in the context of 30 PFG resulted in 133 PC. The majority (n=102) of PC were expressed in both diseases, 30 PC (22.6%) were AML-specific, and only one PC was specific to T-ALL (characterized by high CDKN1A, CDKN1B and CCND1, but low WEE1, CCNB1 and RB1-pSer). Co-clustering of the 133 PC identified 14 CON that formed 17 SIG. Three CON (5, 9, 10) were associated with AML, 2 with T-ALL (2, 13) and 8 CON were observed in both diseases. In contrast, 15 of SIG were associated with either T-ALL or AML, and two SIG (9, 10) included a mixture of both diseases (P & lt; 0.001, annotation bar Figure 1 "Disease")). SIG were associated with gender (P & lt; 0.001), but not with CNS-status and ethnicity (Hispanic vs. non-Hispanic). No age-specific (kids vs. adults) signatures were observed. For each SIG and CON, proteins significantly higher or lower expressed compared to the normal CD34+ cells were identified. CONCLUSIONS: This study provides support for our previous hypothesis that pediatric T-ALL and AML can be characterized by recurrent protein expression patterns. While most PC and CON were found in both diseases, SIG (i.e. combinations of protein expression patterns) were specific to either T-ALL or AML. We found similar results when comparing B-ALL to AML in adults. Shared CON indicate that there are common protein expression patterns between pediatric T-ALL and AML. Proteins or pathways with similar utilization (e.g. CON3, 5) in both diseases may allow for information on clinical utility from one disease to be applicable to the other. Those with differential utilization are likely to be uninformative with respect to clinical utility in the other disease. Figure. "MetaGalaxy" analysis for pediatric AML and T-ALL. Each row represents one protein clusters (n = 133), each column represents one patient (n = 858). Blue indicates membership for that particular protein cluster. Annotation bar shows strong correlation with disease (yellow = T-ALL, blue = AML). No associations were seen for age (blue = adult, pink = pediatric) or Ethnicity (blue = Hispanic, yellow = non-Hispanic). Figure 1 Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: PROTEOMICS – Clinical Applications, Wiley, Vol. 16, No. 2 ( 2022-03)
    Abstract: Purpose: The addition of the proteasome inhibitor (PI) bortezomib to standard chemotherapy (ADE: cytarabine [Ara‐C], daunorubicin, and etoposide) did not improve overall outcome of pediatric AML patients in the Children's Oncology Group AAML1031 phase 3 randomized clinical trial (AAML1031) . Bortezomib prevents protein degradation, including RelA via the intracellular NF‐kB pathway. In this study, we hypothesized that subgroups of pediatric AML patients benefitting from standard therapy plus bortezomib (ADEB) could be identified based on pre‐treatment RelA expression and phosphorylation status. Experimental design: RelA‐total and phosphorylation at serine 536 (RelA‐pSer 536 ) were measured in 483 patient samples using reverse phase protein array technology. Results: In ADEB‐treated patients, low‐RelA‐pSer 536 was favorably prognostic when compared to high‐RelA‐pSer 536 (3‐yr overall survival (OS): 81% vs. 68%, p  = 0.032; relapse risk (RR): 30% vs. 49%, p = 0.004). Among low‐RelA‐pSer 536 patients, RR significantly decreased with ADEB compared to ADE (RR: 30% vs. 44%, p = 0.035). Correlation between RelA‐pSer 536 and 295 other assayed proteins identified a strong correlation with HSF1‐pSer 326 , another protein previously identified as modifying ADEB response. The combination of low‐RelA‐pSer 536 and low‐HSF1‐pSer 326 was a significant predictor of ADEB response (3‐yr OS: 86% vs. 67%, p = 0.013). Conclusion and clinical relevance: Bortezomib may improve clinical outcome in a subgroup of AML patients identified by low‐RelA‐pSer 536 and low‐HSF1‐pSer 326 .
    Type of Medium: Online Resource
    ISSN: 1862-8346 , 1862-8354
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2261788-7
    detail.hit.zdb_id: 2317130-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2676-2676
    Abstract: The proteasome degrades unneeded and damaged proteins. Tumor cells highly depend on increased protein production and their degradation suggesting that malignant cells with a high proliferation index will be more sensitive to proteasome inhibition. The addition of the proteasome inhibitor Bortezomib (Velcade, 'BTZ') to standard pediatric AML chemotherapy (cytarabine, daunorubicin and etoposide, 'ADE') depleted leukemia-initiating cells in a phase 2 clinical trial in pediatric AML (pedi-AML) patients. A randomized phase 3 clinical trial was then conducted by the Children's Oncology Group (COG) comparing ADE and ADE+BTZ treatment regimes in pedi-AML (AAML1031). To determine if there were specific protein expression profiles that correlated with response to BTZ-containing chemotherapy, we analyzed key components of the proteome of pedi-AML that participated in the trial using reverse phase protein arrays (RPPA). RPPA-based expression of 293 validated antibodies was tested in 500 leukemia samples and compared to expression in CD34+ samples from healthy individuals (n=30). Among all proteins, FOXO3 expression was identified as the protein with the highest influence on outcome in the ADE group. The expression of FOXO3 was prognostic for event-free survival (EFS) in both univariate (HR = 0.56, 95% CI = 0.34-0.90, P = 0.017) and multivariate (HR = 0.55, 95% CI = 0.34-0.88, P = 0.013) analysis. All patients were divided into two clusters (low and high) based on their FOXO3 expression level using median FOXO3 expression in normal CD34+. Kaplan-Meier survival analysis showed poor OS (3 year OS 65.3% vs. 73.9%, P = 0.03) and EFS (3 year EFS, 42.8% vs. 55%, P = 0.01) in low FOXO3 expressors (n=119) compared to patients with high FOXO3 expression (n=291) (fig. 1A). Notably, the poor prognostic effect of low FOXO3 for OS was seen in ADE (3 year OS 60% vs. 72.3%, P = 0.03), but not in ADE-BTZ (3 year OS 70.3% vs. 75.3%, P = 0.23) (fig. 1B). This suggests that in particular patients with low FOXO3 may be eligible candidates for BTZ-addition. To validate our findings, we performed knockdown (KD) of FOXO3 using a short hairpin approach in OCI-AML3 (p53WT) and THP-1 (p53null) cell lines. KD FOXO3 in OCI-AML3 had a short-term growth advantage compared to controls (Day 4, P = 0.004), but not KD FOXO3 THP-1 cells suggesting a role for p53 in the FOXO3 functional pathway. KD FOXO3 cells were more resistant to doxorubicin and etoposide combination therapy than controls (P = 0.04), confirming our clinical observations. Since therapeutic regimes in AML are currently shifting towards Bcl-2 inhibition by Venetoclax (ABT-199, 'ABT'), we were eager to test whether BTZ and ABT could act in synergy, and if this is related to FOXO3 expression. Single low dose BTZ and ABT did not reduce cell numbers after 3 days, but were effective when used in combination ( 〈 12% survival, P 〈 0.001) in OCI-AML3 and THP-1. Although cell counts were lower regardless FOXO3 status in both cell lines, flow cytometry analysis using Annexin V staining revealed significant more apoptosis in KD FOXO3 THP-1 compared to controls. Using RPPA-based profiling, we identified a cluster of pedi-AMLs that benefitted from BTZ-addition to standard therapy. We hypothesize that AML patients with low FOXO3 levels have less activation of their apoptotic transcriptional programs and that this subgroup may benefit from proteasome blockage to prevent FOXO3 proteasomal degradation. The use of FOXO3 as potential biomarker may identify a prognostically adverse cluster in pedi-AML that could stratify patients for ADE+BTZ therapy. Patients with low FOXO3 expression may potentially benefit from ADE+BTZ in combination with ABT, a novel and promising combination approach in AML that warrants further investigation. Figure 1. A. Kaplan meier analysis comparing overall survival (OS) and event-free survival (EFS) between low (n=119, blue) and high (n=291, red) FOXO3 expression in pedi-AML patients. Children with low FOXO3 had significantly poorer OS (P = 0.033, Wilcoxon) and EFS (P = 0.011, Wilcoxon). B. Overall survival between ADE (solid) and ADE+BTZ (dashed) treated patients based on low (blue) or high (red) FOXO3 protein expression. The poor prognostic effect of FOXO3 is present in ADE, but not in ADE+BTZ treated patients (P = 0.028, Wilcoxon). Figure 1 Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancers, MDPI AG, Vol. 16, No. 8 ( 2024-04-09), p. 1448-
    Abstract: The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children’s Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2020
    In:  Blood Vol. 136, No. Supplement 1 ( 2020-11-5), p. 24-24
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 24-24
    Abstract: Background: Acute myeloid leukemia (AML) is an epigenetically heterogeneous disease. The intensity of treatment is currently guided by cytogenetic and molecular genetic risk classifications; however these incompletely predict outcomes, requiring additional information for more accurate predictions. We aimed to identify potential prognostic implications of epigenetic modification of histone proteins, with a focus of H3K27 methylation in relation to mutations in chromatin, splicing and transcriptional regulators. Material and methods: Histone methylation mark expressions were evaluated in a cohort of 241 AML bone marrow (BM) and peripheral blood (PB) samples from patients admitted at the MD Anderson Cancer Center relative to their expression in CD34+ BM derived samples from healthy donors. Simultaneous analysis of 230 proteins was performed using the reverse phase protein array - a high-throughput, quantitative proteomic platform that enables identification of aberrant expressed proteins and the pathways they act in. Additional mutational analysis was performed on 65 BM samples. Results:H3K27Me3 was significantly lower in both BM and PB leukemic-derived samples compared to their expression in normal BM (figure 1A). A greater loss of H3K27Me3 associated with increased proliferative potential and shorter overall survival (OS) in the whole patient population (n=241, HR=0.64, 95% CI=0.47-0.87, p & lt;0.01), as well as in subsets, e.g. cytogenetically normal AML (n=110, HR=0.62, 95% CI=0.40-0.97, p=0.03). To study the prognostic impact of H3K27Me3 in the context of cytogenetic aberrations and mutations, multivariate cox regression analysis was performed which identified H3K27Me3 level as an independent favorable prognostic factor in all (HR=0.74, 95%CI=0.57-0.95, p=0.02) as well as in P53 mutated AML (n=54, HR=0.48, 95%CI=0.26-0.87, p=0.02). A total of 78 AML patients had molecular data available for the major methylation affecting genes, i.e. IDH1, IDH2, DNMT3A and TET2. The level of H3K27Me3 was not prognostic in patients without any DNA methylation affecting mutation present, but patients with at least one mutation in any of these had better outcome when H3K27Me3 levels were high (highest tertile, figure 1A) compared to those with lower levels (median OS 7.1 vs. 24.1 months, HR=0.42, 95% CI=0.21-0.83, p=0.01, figure 1B). Mutations in U2AF1 and SRSF2 affect the spliceosome and are frequently found in antecedent hematological disorders (AHD), as well as are mutations in chromatin regulating genes ASXL1 and BCOR. We observed significant decreased H3K27Me3 in patients with these mutations corresponding with observed lower levels of H3K27Me3 in patients with AHD than those without (p=0.035). BCOR, SRSF2, U2AF1 and ASXL1 mutations confer poor prognosis in myeloid malignancies, however, in our cohort of 65 sequenced AML patients; not individual or a combination of these mutations were independent prognostic factors, but the degree of H3K27Me3 in these patients (HR= 0.49, 95% CI=0.25-0.95, p=0.03). To recognize dysregulated pathways in AML patients with the identified loss of H3K27Me3, we examined correlations of H3K27Me3 with the other 229 proteins on the array. H3K27Me3 is catalyzed by the polycomb group protein EZH2 and is linked to transcriptional repression via the formation of heterochromatin regions. To identify upregulated proteins and pathways upon the loss of H3K27Me3, we focused on significant negatively correlated proteins with H3K27Me3 leading us to the identification of 20 total and 6 phospho-proteins that showed increased expression upon decreased H3K27Me3. Functional enrichment analysis of this protein set revealed an upregulated anti-apoptotic phenotype. Conclusion:This study shows that proteomic profiling of epigenetic modifications on the histone level have clinical implications in AML and support the idea that epigenetic patterns contribute to a more accurate picture of the leukemic state complementing cytogenetic and molecular genetic subgrouping. Figure 1. A) Lower H3K27Me3 in BM and PB derived AML samples compared to normal CD34+. **** represents p & lt;0.0001, ns = not significant. B) Overall survival probability in AML patients with any DNA methylation affecting mutation (i.e. IDH1/2, DNMT3A, TET2, n=53) according to H3K27Me3 low (blue) and high (orange) status. Figure 1 Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1460-1460
    Abstract: Background: Lineage-specific gene transcription signatures between AML and ALL are recognized, but post-translational phenotype-specific protein expression profiles remain undefined. We hypothesized that functional proteomic patterns vary between AML and ALL and that the activity state of cells correlates with response to therapy within subgroups, complementing cytogenetic and molecular data. Methods: Reverse phase protein arrays (RPPA) were generated using bone marrow (BM) and peripheral blood (PB) samples from newly diagnosed B-ALL (n=114), T-ALL (n=14), and AML (n=241) adult patients admitted at the MD Anderson Cancer Center. RPPA allowed simultaneous expression measurement of 229 highly validated protein antibodies including 3 Histone 3 (H3) post-translational methylation regulatory modifications; H3K4Me2, H3K4Me3 and H3K27Me3. Results: Unsupervised clustering of histone modification protein expressions distinguished AML from ALL in freshly prepared lysates from BM (n=241) and PB (n=127) as well as when BM and PB samples were combined (fig. 1A). The ALL-enriched cluster was dominated by high H3K27Me3. Elevated H3K27Me3 levels were found in the BM derived leukemic blasts compared to PB blasts in ALL (P & lt; 0.001), but not AML (P = 0.35). Trimethylation of the repressive mark H3K27 is catalyzed by the polycomb group protein Ezh2. Oncogenic gain-of-functions of Ezh2 are seen in patients with lymphoid malignancies and others have shown that mutated Ezh2 increased H3K27Me3 in B-cells which associated with tumorigenesis. H3K27Me3 and Ezh2 antibody expressions were highly correlated in another RPPA of ALL and AML we created (R2=0.49, P & lt; 0.001). Profiling of methylation marks using unsupervised clustering in ALL divided patients in 2 clusters that correlated with survival (fig. 1B-C, P = 0.02). Cluster 1 (C1) with higher H3K27Me3, H3K4Me2 and H3K4Me3 was associated with better outcome. In ALL, Ph+ historically associated with poor prognosis but outcomes have improved substantially with the use of tyrosine kinase inhibitors (TKI). In our cohort, 11/26 Ph+ ALL patients were treated with TKIs and it is notable that sensitivity to TKIs correlated with cluster membership; all C1 patients (high degree of methylation) were alive after 7 years of follow-up in contrast to none of the TKI-treated Ph+ ALL patients in cluster 2 (C2, low degree of methylation) (fig. 1D, P = 0.01). Recently, TKI resistance in Ph+ ALL has been proposed to associate with smoking due to altered DNA methylation patterns caused by chemical components of cigarette smoke. Retrospectively, we identified that 2 of 11 TKI treated patients were smokers. Both had membership in C2, were resistant against TKIs and died after 1 year. Thus, 2 out of 3 resistant TKI treated Ph+ ALL were smokers compared to none of the 8 responders. We then aimed to identify proteins that are potentially downregulated by increased expression of the repressive mark H3K27Me3. Pathway enrichment analysis of 59 significant negatively correlated proteins with H3K27Me3 revealed that these are involved in tyrosine kinase activity and resistance, including Jak/STAT and PI3K/Akt signaling pathways. If these pathways are less activated in patients with high H3K27Me3, then this can partially explain the increased sensitivity to TKIs in this subgroup. Clinically, no differences were found in age, BM and PB blast counts between TKI-treated C1 and C2 patients to provide an explanation for the higher death rate in C2. Conclusion: ALL and AML share some pathophysiology and the identification of differences in the functional activity of cells may contribute to a better understanding of the etiology of both diseases. Here we report that high H3K27Me3 protein levels in BM and PB distinguish ALL from AML and are related to TKI sensitivity in Ph+ ALL. Histone methylation status defines a group of Ph+ ALL patients that does not benefit from the addition of TKI therapy. The idea that smoking alters the epigenetic machinery in TKI resistant Ph+ ALL has been proposed and warrants further investigation. Fig. 1 A) Heatmap showing histone methylation levels in BM and PB from AML and ALL patients. B) Heatmap showing histone methylation levels in ALL BM and PB. Unsupervised clustering divided samples into 2 clusters. C) ALL patients in C1 survived longer than patients in C2 (P = 0.02). D) Increased long-term sensitivity for TKI therapy in C1 Ph+ ALL patients compared to C2 (100 vs. 0%, P = 0.01). Figure.1 Disclosures Jabbour: AbbVie: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Cyclacel LTD: Research Funding; Adaptive: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Amgen: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...