GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 6 ( 2023-03-07), p. 5138-
    Abstract: Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-06-21)
    Abstract: AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida ( Phdp ), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-κB p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile . Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Toxins, MDPI AG, Vol. 14, No. 2 ( 2022-02-05), p. 119-
    Abstract: Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative bacterium that infects a large number of marine fish species in Europe, Asia, and America, both in aquacultures and in the natural environment. Among the affected hosts are economically important cultured fish, such as sea bream (Sparus aurata), sea bass (Dicentrarchus labrax), yellowtail (Seriola quinqueradiata), and cobia (Rachycentron canadum). The best characterized virulence factor of Phdp is the Apoptosis-Inducing Protein of 56 kDa (AIP56), a secreted AB-type toxin that has been shown to induce apoptosis of sea bass phagocytes during infection. AIP56 has an A subunit that displays metalloprotease activity against NF-kB p65 and a B subunit that mediates binding and internalization of the A subunit in susceptible cells. Despite the fact that the aip56 gene is highly prevalent in Phdp isolates from different fish species, the toxicity of AIP56 has only been studied in sea bass. In the present study, the toxicity of AIP56 for sea bream was evaluated. Ex vivo assays showed that sea bream phagocytes are resistant to AIP56 cytotoxicity and that resistance was associated with an inefficient internalization of the toxin by those cells. Accordingly, in vivo intoxication assays revealed that sea bream is much more resistant to AIP56-induced lethality than sea bass. These findings, showing that the effect of AIP56 is different in sea bass and sea bream, set the basis for future studies to characterize the effects of AIP56 and to fully elucidate its virulence role in different Phdp susceptible hosts.
    Type of Medium: Online Resource
    ISSN: 2072-6651
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518395-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2019
    In:  Frontiers in Microbiology Vol. 10 ( 2019-4-24)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 10 ( 2019-4-24)
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: mSphere, American Society for Microbiology, Vol. 6, No. 1 ( 2021-02-24)
    Abstract: Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida ( Phdp ), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( P hotobacterium N lpC-like p rotein A ) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ- d -glutamyl- meso -diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus . This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG. IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida , a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...