GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • deMenocal, Peter B.  (4)
  • 2015-2019  (4)
  • 1
    Online Resource
    Online Resource
    The Royal Society ; 2016
    In:  Philosophical Transactions of the Royal Society B: Biological Sciences Vol. 371, No. 1698 ( 2016-07-05), p. 20150243-
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 371, No. 1698 ( 2016-07-05), p. 20150243-
    Abstract: East African climate change since the Late Miocene consisted of persistent shorter-term, orbital-scale wet–dry cycles superimposed upon a long-term trend towards more open, grassy landscapes. Either or both of these modes of palaeoclimate variability may have influenced East African mammalian evolution, yet the interrelationship between these secular and orbital palaeoclimate signals remains poorly understood. Here, we explore whether the long-term secular climate change was also accompanied by significant changes at the orbital-scale. We develop northeast African hydroclimate and vegetation proxy data for two 100 kyr-duration windows near 3.05 and 1.75 Ma at ODP Site 967 in the eastern Mediterranean basin, where sedimentation is dominated by eastern Sahara dust input and Nile River run-off. These two windows were selected because they have comparable orbital configurations and bracket an important increase in East African C 4 grasslands. We conducted high-resolution (2.5 kyr sampling) multiproxy biomarker, H- and C-isotopic analyses of plant waxes and lignin phenols to document orbital-scale changes in hydrology, vegetation and woody cover for these two intervals. Both intervals are dominated by large-amplitude, precession-scale (approx. 20 kyr) changes in northeast African vegetation and rainfall/run-off. The δ 13 C wax values and lignin phenol composition record a variable but consistently C 4 grass-dominated ecosystem for both intervals (50–80% C 4 ). Precessional δD wax cycles were approximately 20–30‰ in peak-to-peak amplitude, comparable with other δD wax records of the Early Holocene African Humid Period. There were no significant differences in the means or variances of the δD wax or δ 13 C wax data for the 3.05 and 1.75 Ma intervals studied, suggesting that the palaeohydrology and palaeovegetation responses to precessional forcing were similar for these two periods. Data for these two windows suggest that the eastern Sahara did not experience the significant increase in C 4 vegetation that has been observed in East Africa over this time period. This observation would be consistent with a proposed mechanism whereby East African precipitation is reduced, and drier conditions established, in response to the emergence of modern zonal sea surface temperature gradients in the tropical oceans between 3 and 2 Ma. This article is part of the themed issue ‘Major transitions in human evolution’.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2016
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Advances Vol. 3, No. 1 ( 2017-01-06)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 3, No. 1 ( 2017-01-06)
    Abstract: During the “Green Sahara” period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged “pause” in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2015
    In:  Science Advances Vol. 1, No. 9 ( 2015-10-02)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 1, No. 9 ( 2015-10-02)
    Abstract: The recent decline in Horn of Africa rainfall during the March–May “long rains” season has fomented drought and famine, threatening food security in an already vulnerable region. Some attribute this decline to anthropogenic forcing, whereas others maintain that it is a feature of internal climate variability. We show that the rate of drying in the Horn of Africa during the 20th century is unusual in the context of the last 2000 years, is synchronous with recent global and regional warming, and therefore may have an anthropogenic component. In contrast to 20th century drying, climate models predict that the Horn of Africa will become wetter as global temperatures rise. The projected increase in rainfall mainly occurs during the September–November “short rains” season, in response to large-scale weakening of the Walker circulation. Most of the models overestimate short rains precipitation while underestimating long rains precipitation, causing the Walker circulation response to unrealistically dominate the annual mean. Our results highlight the need for accurate simulation of the seasonal cycle and an improved understanding of the dynamics of the long rains season to predict future rainfall in the Horn of Africa.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Geological Society of America ; 2017
    In:  Geology Vol. 45, No. 11 ( 2017-11-01), p. 1023-1026
    In: Geology, Geological Society of America, Vol. 45, No. 11 ( 2017-11-01), p. 1023-1026
    Type of Medium: Online Resource
    ISSN: 0091-7613
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2017
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...