GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 12 ( 2021-6-15)
    Abstract: Cardiorenal syndrome type 2 is characterized by kidney failure as a consequence of heart failure that affects & gt;50% of heart failure patients. Murine transverse aortic constriction (TAC) is a heart failure model, where pressure overload is induced on the heart without any systemic hypertension or its consequences. Whether renal function is altered in this model is debated, and if so, at which time post-TAC renal dysfunction starts to contribute to worsening of cardiac function. We therefore studied the effects of progressive heart failure development on kidney function in the absence of chronically elevated systemic blood pressure and renal perfusion pressure. C57BL/6J mice (N = 129) were exposed to TAC using a minimally invasive technique and followed from 3 to 70 days post-TAC. Cardiac function was determined with 3D ultrasound and showed a gradual decrease in stroke volume over time. Renal renin expression and plasma renin concentration increased with progressive heart failure, suggesting hypoperfusion of the kidney. In addition, plasma urea concentration, a surrogate marker for renal dysfunction, was increased post-TAC. However, no structural abnormalities in the kidney, nor albuminuria were present at any time-point post-TAC. Progressive heart failure is associated with increased renin expression, but only mildly affected renal function without inducing structural injury. In combination, these data suggest that heart failure alone does not contribute to kidney dysfunction in mice.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-12-21)
    Abstract: Heart failure after myocardial infarction (MI) depends on infarct size and adverse left ventricular (LV) remodelling, both influenced by the inflammatory response. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory receptor of ITAM-dependent cell activation, present on almost all immune cells. We investigated regulation of LAIR-1 leukocyte expression after MI in patients and hypothesized that its absence in a mouse model of MI would increase infarct size and adverse remodelling. In patients, LAIR-1 expression was increased 3 days compared to 6 weeks after MI on circulating monocytes (24.8 ± 5.3 vs. 21.2 ± 5.1 MFI, p = 0.008) and neutrophils (12.9 ± 4.7 vs. 10.6 ± 3.1 MFI, p = 0.046). In WT and LAIR-1 −/− mice, infarct size after ischemia-reperfusion injury was comparable (37.0 ± 14.5 in WT vs. 39.4 ± 12.2% of the area at risk in LAIR-1 −/− , p = 0.63). Remodelling after permanent left coronary artery ligation did not differ between WT and LAIR-1 −/− mice (end-diastolic volume 133.3 ± 19.3 vs. 132.1 ± 27.9 μL, p = 0.91 and end-systolic volume 112.1 ± 22.2 vs. 106.9 ± 33.5 μL, p = 0.68). Similarly, no differences were observed in inflammatory cell influx or fibrosis. In conclusion, LAIR-1 expression on monocytes and neutrophils is increased in the acute phase after MI in patients, but the absence of LAIR-1 in mice does not influence infarct size, inflammation, fibrosis or adverse cardiac remodelling.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 12 ( 2021-7-26)
    Abstract: Background: Ischemia-reperfusion and cardiac remodeling is associated with cardiomyocyte death, excessive fibrosis formation, and functional decline, eventually resulting in heart failure (HF). Glucagon-like peptide (GLP)-1 agonists are reported to reduce apoptosis and myocardial infarct size after ischemia-reperfusion. Moreover, mineralocorticoid receptor antagonists (MRAs) have been described to reduce reactive fibrosis and improve cardiac function. Here, we investigated whether combined treatment with GLP-1R agonist exenatide and MRA potassium canrenoate could minimize cardiac injury and limit HF progression in animal models of chronic HF. Methods and Results: Forty female Topigs Norsvin pigs were subjected to 150 min balloon occlusion of the left anterior descending artery (LAD). Prior to reperfusion, pigs were randomly assigned to placebo or combination therapy (either low dose or high dose). Treatment was applied for two consecutive days or for 8 weeks with a continued high dose via a tunneled intravenous catheter. Using 2,3,5-Triphenyltetrazolium chloride (TTC) staining we observed that combination therapy did not affect the scar size after 8 weeks. In line, left ventricular volume and function assessed by three-dimensional (3D) echocardiography (baseline, 7 days and 8 weeks), and cardiac magnetic resonance imaging (CMR, 8 weeks) did not differ between experimental groups. In addition, 36 C57Bl/6JRj mice underwent permanent LAD-occlusion and were treated with either placebo or combination therapy prior to reperfusion, for two consecutive days via intravenous injection, followed by continued treatment via placement of osmotic mini-pumps for 28 days. Global cardiac function, assessed by 3D echocardiography performed at baseline, 7, 14, and 28 days, did not differ between treatment groups. Also, no differences were observed in cardiac hypertrophy, assessed by heart weight/bodyweight and heart weight/tibia length ratio. Conclusion: In the current study, combined treatment with GLP-1R agonist exenatide and MR antagonist potassium canrenoate did not show beneficial effects on cardiac remodeling nor resulted in functional improvement in a small and large animal chronic HF model.
    Type of Medium: Online Resource
    ISSN: 1663-9812
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2587355-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-12-06)
    Abstract: Hypertension is one of the most common risk factors for the development heart failure in the general population. Inflammation plays a central role in this adverse remodeling and eventually to the development of heart failure. Circulating levels of Complement factor 5a (C5a) are increased in hypertensive patients and the C5a receptor is associated with the presence of cardiac fibrosis and inflammation in an experimental hypertension model. To test if C5aR is involved in adverse cardiac remodeling following pressure-overload, we induced transverse aortic constriction (TAC) in wildtype and C5a receptor deficient mice (C5aR −/− ). Six weeks after TAC, C5aR-/- animals showed a similar degree of cardiac hypertrophy and decrease in cardiac function as wild type mice (End Systolic Volume; 50.30±5.32 µl vs. 55.81±8.16 µl). In addition, other features of adverse cardiac remodeling like cardiomyocyte cell size (WGA staining), fibrosis (picrosirius red staining) or collagen degradation (matrix metalloproteinase activity assay) did not differ either. In conclusion, full body C5aR deficiency does not affect adverse cardiac remodeling after pressure-overload. However, our finding are in contrast with C5a inhibition studies. Our observations do present the role of C5a-C5aR in adverse cardiac remodeling and heart failure as controversial at the least.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Extracellular Biology, Wiley, Vol. 2, No. 9 ( 2023-09)
    Abstract: Extracellular vesicles (EVs) are nanoscale particles that facilitate intercellular communication. They are regarded as a promising natural drug delivery system for transporting and delivering bioactive macromolecules to target cells. Recently, researchers have engineered EVs with FKBP12/FRB heterodimerization domains that interact with rapamycin to load and deliver exogenous proteins for both in vitro and in vivo applications. In this study, we examined the tissue distribution of EVs using near‐infrared fluorescent imaging. We evaluated the effectiveness of EV‐mediated delivery of Cre recombinase specifically to hepatocytes in the livers of Ai9 Cre‐loxP reporter mice. Intravenous injection resulted in more efficient Cre protein delivery to the liver than intraperitoneal injections. Depleting liver‐resident macrophages with clodronate‐encapsulated liposome pre‐treatment did not enhance EV‐mediated Cre delivery to hepatocytes. Moreover, we demonstrated that multiple intravenous injections of Cre‐EVs facilitated functional Cre delivery to hepatocytes. To the best of our knowledge, this is the first study to simultaneously investigate the tissue distribution of FKBP12/FRB‐engineered EVs and their subsequent intracellular protein delivery in Ai9 Cre‐loxP reporter mice. These insights can inform preclinical research and contribute to developing next‐generation EV‐based platforms for delivering therapeutic proteins or genome editing technologies targeting the liver.
    Type of Medium: Online Resource
    ISSN: 2768-2811 , 2768-2811
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 3120403-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...