GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    EDP Sciences ; 2022
    In:  Astronomy & Astrophysics Vol. 659 ( 2022-03), p. A164-
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 659 ( 2022-03), p. A164-
    Abstract: Context. A flare-driven quasi-periodic extreme ultraviolet wave train totally reflected at a coronal hole boundary was well imaged on both temporal and spatial scales by AIA/SDO. Aims. We aim to investigate the driving mechanisms of the quasi-periodic wave train and demonstrate the total reflection effect at the coronal hole boundary. Methods. The speeds of the incident and reflected wave trains are studied. The periodic correlation of the wave trains with the related flare is probed. We compare the measured incidence angle and the estimated critical angle. Results. We find that the periods of the incident and reflected wave trains are both about 100 s. The excitation of the quasi-periodic wave train was possibly due to the intermittent energy release in the associated flare since its period is similar to that of the quasi-periodic pulsations in the associated flare. Our observational results show that the reflection of the wave train at the boundary of the coronal hole was a total reflection because the measured incidence and critical angles satisfy the theory of total reflection: the incidence angle is smaller than the critical angle.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Astronomical Society ; 2021
    In:  The Astrophysical Journal Letters Vol. 912, No. 1 ( 2021-05-01), p. L15-
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 912, No. 1 ( 2021-05-01), p. L15-
    Abstract: We present the sympathetic eruption of a standard and a blowout coronal jet originating from two adjacent coronal bright points (CBP1 and CBP2) in a polar coronal hole, using soft X-ray and extreme-ultraviolet observations respectively taken by the Hinode and the Solar Dynamics Observatory. In the event, a collimated jet with obvious westward lateral motion first launched from CBP1, during which a small bright point appeared around CBP1's east end, and magnetic flux cancellation was observed within the eruption source region. Based on these characteristics, we interpret the observed jet as a standard jet associated with photospheric magnetic flux cancellation. About 15 minutes later, the westward-moving jet spire interacted with CBP2 and resulted in magnetic reconnection between them, which caused the formation of the second jet above CBP2 and the appearance of a bright loop system in between the two CBPs. In addition, we observed the writhing, kinking, and violent eruption of a small kink structure close to CBP2's west end but inside the jet base, which made the second jet brighter and broader than the first one. These features suggest that the second jet should be a blowout jet triggered by the magnetic reconnection between CBP2 and the spire of the first jet. We conclude that the two successive jets were physically connected to each other rather than a temporal coincidence, and this observation also suggests that coronal jets can be triggered by external eruptions or disturbances, as well as internal magnetic activities or magnetohydrodynamic instabilities.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Astronomical Society ; 2022
    In:  The Astrophysical Journal Letters Vol. 926, No. 2 ( 2022-02-01), p. L39-
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 926, No. 2 ( 2022-02-01), p. L39-
    Abstract: Using imaging and radio multi-wavelength observations, we studied the origin of two homologous accelerated electron beams and a quasiperiodic fast-propagating (QFP) wave train associated with a solar jet on 2012 July 14. The jet occurred in a small-scale fan-spine magnetic system embedded in a large-scale pseudostreamer associated with a GOES C1.4 flare, a jet-like coronal mass ejection (CME), a type II radio burst, and a type III radio burst. During the initial stage, a QFP wave train and a fast-moving on-disk radio source were detected in succession ahead of the jet along the outer spine of the fan-spine system. When the jet reached a height of about 1.3 solar radii, it underwent a bifurcation into two branches. Based on our analysis results, all the observed phenomena in association with the jet can be explained by using a fan-spine magnetic system. We propose that both the type III radio burst and the on-disk fast-moving radio source were caused by the same physical process, i.e., energetic electrons accelerated by magnetic reconnection at the null point, and these energetic electrons were propagating along the open field lines of the pseudostreamer and the closed outer spine of the fan-spine structure, respectively. Due to the bifurcation of the jet body, the lower branch along the closed outer spine of the fan-spine structure fell back to the solar surface, while the upper branch along the open field lines of the pseudostreamer caused the jet-like CME in the outer corona.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 520, No. 2 ( 2023-02-07), p. 3080-3088
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 2 ( 2023-02-07), p. 3080-3088
    Abstract: We report the first observations of simultaneous large-amplitude longitudinal and transverse oscillations of a quiescent filament trigged by a two-sided-loop jet formed by the magnetic reconnection between the filament and an emerging loop in the filament channel, recorded by the Solar Dynamics Observatory and the Solar TErrestrial RElations Observatory. The north arm of the jet firstly pushed the filament mass moving northwardly along the magnetic field lines consisting of the coronal cavity, then some elevated filament mass fell back and started to oscillate longitudinally at the bottom of the cavity (i.e. the magnetic dip). The northernmost part of the filament also showed transverse oscillation simultaneously. The amplitude and period of the longitudinal (transverse) oscillation are 12.96 (2.99) Mm and 1.18 (0.33) h, respectively. By using the method of filament seismology, the radius of curvature of the magnetic dip is about 151 Mm, consistent with that obtained by the 3D reconstruction (166 Mm). Using different physical parameters of the observed longitudinal and transverse oscillations, the magnetic field strength of the filament is estimated to be about 23 and 21 Gauss, respectively. By calculating the energy of the moving filament mass, the minimum energy of the jet is estimated to be about $1.96 \times 10^{28} \operatorname{erg}$. We conclude that the newly formed jet can not only trigger simultaneous longitudinal and transverse oscillations in a single filament, but also can be used as a seismology tool for diagnosing filament information, such as the magnetic structure, magnetic field strength, and magnetic twists.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Infection, Elsevier BV, Vol. 86, No. 4 ( 2023-04), p. 406-409
    Type of Medium: Online Resource
    ISSN: 0163-4453
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2012883-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Letters Vol. 942, No. 1 ( 2023-01-01), p. L22-
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 942, No. 1 ( 2023-01-01), p. L22-
    Abstract: Solar macrospicules are beam-like cool plasma ejections of size in between spicules and coronal jets, which can elucidate potential connections between plasma jetting activity at different scales. With high-resolution observations from the New Vacuum Solar Telescope and Solar Dynamics Observatory, we investigate the origin of five groups of recurrent active-region macrospicules. Before the launch of each macrospicule, we detect a compact bright patch (BP) at its base where a newly emerging dipole contacts and cancel with the preexisting ambient field. The spectral diagnosis from the Interface Region Imaging Spectrograph at one of BPs reveals signatures of reconnection at the lower atmosphere. Multiwavelength imaging of these BPs show that they mainly occur at the rising phase of the flux emergence and slowly ascend from the lower to the upper chromosphere. Remarkable macrospicules occur and fade out once the BPs appear and decay from the AIA 304 Å images, respectively. We suggest that these macrospicules and related BPs form in a common reconnection process, in which the increasing reconnection height between the emerging dipole and the ambient field results in the observed variations from BPs to macrospicules. Interestingly, most macrospicules show similar characteristics to larger-scale coronal jets and/or smaller-scale spicules, i.e., the rotating motions, the presence of minifilaments and BPs before the eruptions, and magnetic flux emergence and cancellation. We conclude that the formation mechanism of macrospicules should be the same as spicules and coronal jets, i.e., solar jetting phenomena at different scales share the same physical mechanism in association with magnetic reconnection.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    EDP Sciences ; 2022
    In:  Astronomy & Astrophysics Vol. 665 ( 2022-09), p. A51-
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 665 ( 2022-09), p. A51-
    Abstract: Quasi-periodic fast-propagating (QFP) magnetosonic wave trains are commonly observed in the low corona at extreme ultraviolet wavelength bands. Here, we report the first white-light imaging observation of a QFP wave train propagating outwardly in the outer corona ranging from 2 to 4 R ⊙ . The wave train was recorded by the Large Angle Spectroscopic Coronagraph on board the Solar and Heliospheric Observatory (SOHO), and was associated with a GOES M1.5 flare in NOAA active region AR12172 at the southwest limb of the solar disk. Measurements show that the speed and period of the wave train were about 218 km s −1 and 26 min, respectively. The extreme ultraviolet imaging observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory reveal that in the low corona the QFP wave train was associated with the failed eruption of a breakout magnetic system consisting of three low-lying closed loop systems enclosed by a high-lying large-scale one. Data analysis results show that the failed eruption of the breakout magnetic system was mainly because of the magnetic reconnection that occurred between the two lateral low-lying closed-loop systems. This reconnection enhances the confinement capacity of the magnetic breakout system because the upward-moving reconnected loops continuously feed new magnetic fluxes to the high-lying large-scale loop system. For the generation of the QFP wave train, we propose that it could be excited by the intermittent energy pulses released by the quasi-periodic generation, rapid stretching, and expansion of the upward-moving, strongly bent reconnected loops.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: HemaSphere, Ovid Technologies (Wolters Kluwer Health), Vol. 7, No. S3 ( 2023-08), p. e82508fa-
    Type of Medium: Online Resource
    ISSN: 2572-9241
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2922183-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Astrophysical Journal, American Astronomical Society, Vol. 941, No. 1 ( 2022-12-01), p. 59-
    Abstract: About the driven mechanisms of the quasiperiodic fast-propagating (QFP) wave trains, there exist two dominant competing physical explanations: they are associated with the flaring energy release or attributed to the waveguide dispersion. Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we investigated a series of QFP wave trains composed of multiple wave fronts propagating along a loop system during the accompanying flare on 2011 November 11. The wave trains showed a high correlation in start times with the energy release of the accompanying flare. Measurements show that the wave trains’ phase speed is almost consistent with its group speed with a value of about 1000 km s −1 , indicating that the wave trains should not be considered dispersed waves. The period of the wave trains was the same as that of the oscillatory signal in X-ray emissions released by the flare. Thus we propose that the QFP wave trains were most likely triggered by the flare rather than by dispersion. We investigated the seismological application with the QFP waves and then obtained that the magnetic field strength of the waveguide was about 10 G. Meanwhile, we also estimated that the energy flux of the wave trains was about 1.2 × 10 5 erg cm −2 s −1 .
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2021
    In:  IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems Vol. 40, No. 6 ( 2021-6), p. 1052-1062
    In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE), Vol. 40, No. 6 ( 2021-6), p. 1052-1062
    Type of Medium: Online Resource
    ISSN: 0278-0070 , 1937-4151
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2021
    detail.hit.zdb_id: 627344-0
    detail.hit.zdb_id: 2034328-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...