GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Society for Neuroscience  (2)
  • Zhou, Xiaoming  (2)
Material
Publisher
  • Society for Neuroscience  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2014
    In:  The Journal of Neuroscience Vol. 34, No. 16 ( 2014-04-16), p. 5406-5415
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 16 ( 2014-04-16), p. 5406-5415
    Abstract: It has previously been shown that environmental enrichment can enhance structural plasticity in the brain and thereby improve cognitive and behavioral function. In this study, we reared developmentally noise-exposed rats in an acoustic-enriched environment for ∼4 weeks to investigate whether or not enrichment could restore developmentally degraded behavioral and neuronal processing of sound frequency. We found that noise-exposed rats had significantly elevated sound frequency discrimination thresholds compared with age-matched naive rats. Environmental acoustic enrichment nearly restored to normal the behavioral deficit resulting from early disrupted acoustic inputs. Signs of both degraded frequency selectivity of neurons as measured by the bandwidth of frequency tuning curves and decreased long-term potentiation of field potentials recorded in the primary auditory cortex of these noise-exposed rats also were reversed partially. The observed behavioral and physiological effects induced by enrichment were accompanied by recovery of cortical expressions of certain NMDA and GABA A receptor subunits and brain-derived neurotrophic factor. These studies in a rodent model show that environmental acoustic enrichment promotes recovery from early noise-induced auditory cortical dysfunction and indicate a therapeutic potential of this noninvasive approach for normalizing neurological function from pathologies that cause hearing and associated language impairments in older children and adults.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 43, No. 16 ( 2023-04-19), p. 2850-2859
    Abstract: Antidepressants, while effective in treating depression and anxiety disorders, also induce deficits in sensory (particularly auditory) processing, which in turn may exacerbate psychiatric symptoms. How antidepressants cause auditory signature deficits remains largely unknown. Here, we found that fluoxetine-treated adult female rats were significantly less accurate when performing a tone-frequency discrimination task compared with age-matched control rats. Their cortical neurons also responded less selectively to sound frequencies. The degraded behavioral and cortical processing was accompanied by decreased cortical perineuronal nets, particularly those wrapped around parvalbumin-expressing inhibitory interneurons. Furthermore, fluoxetine induced critical period-like plasticity in their already mature auditory cortices; therefore, a brief rearing of these drug-treated rats under an enriched acoustic environment renormalized auditory processing degraded by fluoxetine. The altered cortical expression of perineuronal nets was also reversed as a result of enriched sound exposure. These findings suggest that the adverse effects of antidepressants on auditory processing, possibly because of a reduction in intracortical inhibition, can be substantially alleviated by simply pairing drug treatment with passive, enriched sound exposure. They have important implications for understanding the neurobiological basis of antidepressant effects on hearing and for designing novel pharmacological treatment strategies for psychiatric disorders. SIGNIFICANCE STATEMENT Clinical experience suggests that antidepressants adversely affect sensory (particularly auditory) processing, which can exacerbate patients' psychiatric symptoms. Here, we show that the antidepressant fluoxetine reduces cortical inhibition in adult rats, leading to degraded behavioral and cortical spectral processing of sound. Importantly, fluoxetine induces a critical period-like state of plasticity in the mature cortex; therefore, a brief rearing under an enriched acoustic environment is sufficient to reverse the changes in auditory processing caused by the administration of fluoxetine. These results provide a putative neurobiological basis for the effects of antidepressants on hearing and indicate that antidepressant treatment combined with enriched sensory experiences could optimize clinical outcomes.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2023
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...