GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Scientific Societies  (5)
  • Zheng, Youliang  (5)
Material
Publisher
  • Scientific Societies  (5)
Language
Years
  • 1
    In: Phytopathology®, Scientific Societies, Vol. 111, No. 9 ( 2021-09), p. 1594-1601
    Abstract: Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult plant resistance (APR) to stripe rust for 〉 15 years. To identify quantitative trait loci (QTLs) for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Puccinia striiformis f. sp. tritici races at the adult plant stage and genotyped via the wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,143 SNP markers. Three QTLs, designated as QYr.AYH-1AS, QYr.AYH-5BL, and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL, and 7DS, respectively. RILs combining three QTLs showed significantly lower FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6 to 21.4% and 17.6 to 33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, whereas QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is probably present in 6.2% of the 323 surveyed Chinese wheat landraces. The kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers has potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Phytopathology®, Scientific Societies, Vol. 108, No. 6 ( 2018-06), p. 737-747
    Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.
    Type of Medium: Online Resource
    ISSN: 0031-949X , 1943-7684
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2018
    detail.hit.zdb_id: 2037027-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Plant Disease, Scientific Societies, Vol. 105, No. 7 ( 2021-07-01), p. 1919-1925
    Abstract: Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Chinese wheat landrace Guangtoumai (GTM) exhibited a high level of resistance against predominant P. striiformis f. sp. tritici races in China at the adult plant stage. The objective of this research was to identify and map the major locus/loci for stripe rust resistance in GTM. A set of 212 recombinant inbred lines (RILs) was developed from a cross between GTM and Avocet S. The parents and RILs were evaluated in three field tests (2018, 2019, and 2020 at Chongzhou, Sichuan) with the currently predominant P. striiformis f. sp. tritici races for final disease severity and genotyped with the Wheat 55K single nucleotide polymorphism (SNP) array to construct a genetic map with 1,031 SNP markers. A major locus, named QYr.GTM-5DL, was detected on chromosome 5DL in GTM. The locus was mapped in a 2.75-cM interval flanked by SNP markers AX-109855976 and AX-109453419, explaining up to 44.4% of the total phenotypic variation. Since no known Yr genes have been reported on chromosome 5DL, QYr.GTM-5DL is very likely a novel adult plant resistance locus. Haplotype analysis revealed that the resistance allele displayed enhanced levels of stripe rust resistance and is likely present in 5.3% of the 247 surveyed Chinese wheat landraces. The derived cleaved amplified polymorphic sequence (dCAPS) marker dCAPS-5722, converted from a SNP marker tightly linked to QYr.GTM-5DL with 0.3 cM, was validated on a subset of RILs and 48 commercial wheat cultivars developed in Sichuan. The results indicated that QYr.GTM-5DL with its linked dCAPS marker could be used in marker-assisted selection to improve stripe rust resistance in breeding programs, and this quantitative trait locus will provide new and possibly durable resistance to stripe rust.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Plant Disease, Scientific Societies, Vol. 106, No. 4 ( 2022-04-01), p. 1278-1285
    Abstract: Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a damaging disease of wheat globally, and breeding resistant cultivars is the best control strategy. The Chinese winter wheat cultivar Shumai126 (SM126) exhibited strong resistance to P. striiformis f. sp. tritici in the field for more than 10 years. The objective of this study was to identify and map quantitative trait loci (QTL) for resistance to stripe rust in a population of 154 recombinant inbred lines (RILs) derived from a cross between cultivars Taichang29 (TC29) and SM126. The RILs were tested in six field environments with a mixture of the Chinese prevalent races (CYR32, CYR33, CYR34, Zhong4, and HY46) of P. striiformis f. sp. tritici and in growth chamber with race CYR34 and genotyped using the Wheat55K single nucleotide polymorphism (SNP) array. Six QTL were mapped on chromosomes 1BL, 2AS, 2AL, 6AS, 6BS, and 7BL, respectively. All QTL were contributed by SM126 except QYr.sicau-2AL. The QYr.sicau-1BL and QYr.sicau-2AS had major effects, explaining 27.00 to 39.91% and 11.89 to 17.11% of phenotypic variances, which may correspond to known resistance genes Yr29 and Yr69, respectively. The QYr.sicau-2AL, QYr.sicau-6AS, and QYr.sicau-6BS with minor effects are likely novel. QYr.sicau-7BL was only detected based on growth chamber seedling data. Additive effects were detected for the combination of QYr.sicau-1BL, QYr.sicau-2AS, and QYr.sicau-2AL. SNP markers linked to QYr.sicau-1BL (AX-111056129 and AX-108839316) and QYr.sicau-2AS (AX-111557864 and AX-110433540) were converted to breeder-friendly Kompetitive allele-specific PCR (KASP) markers that would facilitate the deployment of stripe rust resistance genes in wheat breeding.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2022
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plant Disease, Scientific Societies, Vol. 106, No. 4 ( 2022-04-01), p. 1209-1215
    Abstract: Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the most destructive diseases of wheat. Identifying novel resistance genes applicable for developing disease-resistant cultivars is important for the sustainable control of wheat stripe rust. Chinese wheat landrace ‘Xiaohemai’ (‘XHM’) is an elite germplasm line with all-stage resistance (ASR) effective against predominant Chinese P. striiformis f. sp. tritici races. In this study, we performed a bulked segregant analysis coupled with exome capture sequencing (BSE-seq) to identify a candidate genomic region strongly associated with stripe rust resistance on chromosome 1AL in 173 F 2:3 lines derived from the cross ‘XHM’ × ‘Avocet S’. The gene, designated as YrXH-1AL, was validated by a conventional quantitative trait locus analysis using newly developed Kompetitive allele-specific PCR (KASP) markers, explaining up to 48.50% of the phenotypic variance. By testing a secondary mapping population comprising 144 lines from the same cross at the seedling stage with prevalent P. striiformis f. sp. tritici race CYR34, YrXH-1AL was identified as a single Mendelian factor in a 1.5-cM interval flanked by KASP markers KP1A_484.33 and KP1A_490.09. This region corresponded to a 5.76-Mb genomic interval on ‘Chinese Spring’ chromosome 1AL. Furthermore, two cosegregating KASP markers showed high polymorphisms among 130 Chinese wheat cultivars and could be used for marker-assisted selection. Because no other Yr genes for ASR that originated from common wheat have been detected on chromosome 1AL, YrXH-1AL is likely a novel gene that can be incorporated into modern breeding materials to develop wheat cultivars with enhanced stripe rust resistance.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2022
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...