GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
  • Zheng, Jianqiu  (2)
Material
Publisher
  • Copernicus GmbH  (2)
Language
Years
  • 1
    In: Biogeosciences, Copernicus GmbH, Vol. 15, No. 21 ( 2018-11-08), p. 6621-6635
    Abstract: Abstract. Rapid warming of Arctic ecosystems accelerates microbial decomposition of soil organic matter and leads to increased production of carbon dioxide (CO2) and methane (CH4). CH4 oxidation potentially mitigates CH4 emissions from permafrost regions, but it is still highly uncertain whether soils in high-latitude ecosystems will function as a net source or sink for CH4 in response to rising temperature and associated hydrological changes. We investigated CH4 production and oxidation potential in permafrost-affected soils from degraded ice-wedge polygons on the Barrow Environmental Observatory, Utqiaġvik (Barrow), Alaska, USA. Frozen soil cores from flat and high-centered polygons were sectioned into organic, transitional, and permafrost layers, and incubated at −2, +4 and +8 ∘C to determine potential CH4 production and oxidation rates. Significant CH4 production was only observed from the suboxic transition layer and permafrost of flat-centered polygon soil. These two soil sections also exhibited highest CH4 oxidation potentials. Organic soils from relatively dry surface layers had the lowest CH4 oxidation potential compared to saturated transition layer and permafrost, contradicting our original assumptions. Low methanogenesis rates are due to low overall microbial activities measured as total anaerobic respiration and the competing iron-reduction process. Our results suggest that CH4 oxidation could offset CH4 production and limit surface CH4 emissions, in response to elevated temperature, and thus must be considered in model predictions of net CH4 fluxes in Arctic polygonal tundra. Future changes in temperature and soil saturation conditions are likely to divert electron flow to alternative electron acceptors and significantly alter CH4 production, which should also be considered in CH4 models.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biogeosciences, Copernicus GmbH, Vol. 16, No. 3 ( 2019-02-04), p. 663-680
    Abstract: Abstract. Rapid warming of Arctic ecosystems exposes soil organic matter (SOM) to accelerated microbial decomposition, potentially leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. Current estimates of the magnitude and form of carbon emissions from Earth system models include significant uncertainties, partially due to the oversimplified representation of geochemical constraints on microbial decomposition. Here, we coupled modeling principles developed in different disciplines, including a thermodynamically based microbial growth model for methanogenesis and iron reduction, a pool-based model to represent upstream carbon transformations, and a humic ion-binding model for dynamic pH simulation to build a more versatile carbon decomposition model framework that can be applied to soils under varying redox conditions. This new model framework was parameterized and validated using synthesized anaerobic incubation data from permafrost-affected soils along a gradient of fine-scale thermal and hydrological variabilities across Arctic polygonal tundra. The model accurately simulated anaerobic CO2 production and its temperature sensitivity using data on labile carbon pools and fermentation rates as model constraints. CH4 production is strongly influenced by water content, pH, methanogen biomass, and presence of competing electron acceptors, resulting in high variability in its temperature sensitivity. This work provides new insights into the interactions of SOM pools, temperature increase, soil geochemical feedbacks, and resulting CO2 and CH4 production. The proposed anaerobic carbon decomposition framework presented here builds a mechanistic link between soil geochemistry and carbon mineralization, making it applicable over a wide range of soils under different environmental settings.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...