GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Zhao, Zhongwei  (2)
Material
Publisher
  • Wiley  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Sedimentology, Wiley, Vol. 69, No. 4 ( 2022-06), p. 1547-1572
    Abstract: Formulae for sediment thresholds of motion are commonly based on flume experiments on rounded quartz particles and it is unclear how well they predict thresholds in natural settings. Here, sediment threshold shear stresses were calculated from one such formula using surface grain‐size data from 112 sites around Santa Maria Island, Azores. To compare with those stresses, a Simulating Waves Nearshore model was run for three typical winter months to predict shelf stress maxima due to waves. As wind‐driven and other circulations also increase stresses, the model predictions are under‐estimates. Comparison of the two stress estimates suggests that the whole shelf of the island was mobile during extreme conditions. However, three forms of evidence contradict this. First, 129 rollovers of sandy clinoforms lying in 30 to 200 m water depths around the island were identified from boomer seismic data. It has been suggested that such rollovers mark depths at which hydrodynamic stresses fall beneath the sediment threshold of motion. Second, differences in grain‐size diversity between carbonate‐free and whole sediment indicate where carbonate particle fragmentation occurs. Third, seabed images reveal variations in ripple character and presence. The combined data suggest that deposition has occurred in the middle and outer shelf, overlapping where the model predicts sediment mobilization. However, by decreasing the model bottom shear stress or increasing the shear stress at threshold of motion by a factor of two to three, deposition is predicted to have occurred immediately deeper than the shallow active rollovers. Therefore, in practice, the ratio of wave‐imposed shear stress to stress at threshold of motion is two to three times smaller than predicted. This is speculated to be due to the presence of widespread hard substrates and other features shielding particles between them from wave stresses. Alternatively, the threshold of motion is higher than expected from the formulae for these sediments dominated by bioclastic particles.
    Type of Medium: Online Resource
    ISSN: 0037-0746 , 1365-3091
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020955-1
    detail.hit.zdb_id: 206889-8
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Earth Surface Processes and Landforms Vol. 44, No. 15 ( 2019-12), p. 2982-3006
    In: Earth Surface Processes and Landforms, Wiley, Vol. 44, No. 15 ( 2019-12), p. 2982-3006
    Abstract: Erosion of volcanic islands ultimately creates shallow banks and guyots, but the ways in which erosion proceeds to create them over time and how the coastline retreat rate relates to wave conditions, rock mass strength and other factors are unclear. The Capelinhos volcano was formed in 1957/58 during a Surtseyan and partly effusive eruption that added an ~2.5 km 2 tephra and lava promontory to the western end of Faial Island (Azores, central North Atlantic). Subsequent coastal and submarine erosion has reduced the subaerial area of the promontory and created a submarine platform. This study uses historical information, photos and marine geophysical data collected around the promontory to characterize how the submarine platform developed following the eruption. Historical coastline positions are supplemented with coastlines interpreted from 2004 and 2014 Google Earth images in order to work out the progression of coastline retreat rate and retreat distance for lava‐ and tephra‐dominated cliffs. Data from swath mapping sonars are used to characterize the submarine geometry of the resulting platform (position of the platform edge, gradient and morphology of the platform surface). Photographs collected during SCUBA and ROV dives on the submarine platform reveal a rugged surface now covered with boulders. The results show that coastal retreat rates decreased rapidly with time after the eruption and approximately follow an inverse power‐law relationship with coastal retreat distance. We develop a finite‐difference model for wave attenuation over dipping surfaces to predict how increasing wave attenuation contributed to this trend. The model is verified by reproducing the wave height variation over dipping rock platforms in the UK (platform gradient 1.2° to 1.8°) and Ireland (1.8°). Applying the model to the dipping platform around Capelinhos, using a diversity of cliff resistance predicted from known lithologies, we are able to predict erosion rate trends for some sectors of the edifice. We also explore wider implications of these results, such as how erosion creates shallow banks and guyots in reef‐less mid‐oceanic archipelagos like the Azores. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0197-9337 , 1096-9837
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1479188-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...