GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (9)
  • Zhao, Ye  (9)
Material
Publisher
  • MDPI AG  (9)
Language
Years
  • 1
    In: Nutrients, MDPI AG, Vol. 15, No. 8 ( 2023-04-16), p. 1927-
    Abstract: Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by hyperandrogenemia with multiple suspended sinus follicles, thickened cortical tissue, and excessive proliferation of ovarian granulosa cells that severely affects the fertility and quality of life of women. The addition of n-3 PUFA to the diet may slightly reduce body weight and greatly alleviate disturbed blood hormone levels in PCOS mice. We treated KGN as a cell model for n-3 PUFA addition and showed that n-3 PUFA inhibited the proliferation of GCs and promoted ferroptosis in ovarian granulosa cells. We used CCK-8, fluorescence quantitative transmission electron microscopy experiments and ferroptosis marker gene detection and other methods. Furthermore, n-3 PUFA was found to promote YAP1 exocytosis by activating Hippo and weakening the cross-talk between YAP1 and Nrf2 by activating the Hippo signaling pathway. In this study, we found that n-3 PUFA inhibited the over proliferation of granulosa cells in ovarian follicles by activating Hippo, promoting YAP1 exocytosis, weakening the cross-talk between YAP1 and Nrf2, and ultimately activating the ferroptosis sensitivity of ovarian granulosa cells. We demonstrate that n-3 PUFA can alleviate the hormonal and estrous cycle disorder with PCOS by inhibiting the YAP1-Nrf2 crosstalk that suppresses over proliferating ovarian granulosa cells and promotes iron death in GCs. These findings reveal the molecular mechanisms by which n-3 PUFA attenuates PCOS and identify YAP1-Nrf2 as a potential therapeutic target for regulation granulosa cells in PCOS.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518386-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Molecular Sciences Vol. 22, No. 19 ( 2021-09-23), p. 10261-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 19 ( 2021-09-23), p. 10261-
    Abstract: Obesity has become a worldwide epidemic, caused by many factors such as genetic regulatory elements, unhealthy diet, and lack of exercise. MicroRNAs (miRNAs) are non-coding single-stranded RNA classes, which are about 22 nucleotides in length and highly conserved among species. In the last decade, a series of miRNAs were identified as therapeutic targets for obesity. In the present study, we found that miR-126b-5p was associated with adipogenesis. miR-126b-5p overexpression promoted the proliferation of 3T3-L1 preadipocytes by upregulating the expression of proliferation-related genes and downregulating the expression of apoptosis-related genes; the inhibition of miR-126b-5p gave rise to opposite results. Similarly, miR-126b-5p overexpression could promote the differentiation of 3T3-L1 preadipocytes by increasing the expression of lipid deposition genes and triglyceride (TG) and total cholesterol (TC) levels. Moreover, luciferase reporter assay demonstrated that adiponectin receptor 2 (Adipor2) and acyl-CoA dehydrogenase, long chain (ACADL) were the direct target genes of miR-126b-5p. Moreover, overexpression of miR-126b-5p could exacerbate the clinical symptoms of obesity when mice were induced by a high-fat diet, including increased adipose tissue weight, adipocyte volume, and insulin resistance. Interestingly, overexpression of miR-126b-5p in preadipocytes and mice could significantly increase total fatty acid content and change the fatty acid composition of adipose tissue. Taken together, the present study showed that miR-126b-5p promotes lipid deposition in vivo and in vitro, indicating that miR-126b-5p is a potential target for treating obesity.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 13 ( 2022-07-05), p. 7488-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 13 ( 2022-07-05), p. 7488-
    Abstract: Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Current Issues in Molecular Biology, MDPI AG, Vol. 45, No. 3 ( 2023-03-02), p. 2073-2089
    Abstract: The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.
    Type of Medium: Online Resource
    ISSN: 1467-3045
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2090836-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 19, No. 2 ( 2018-02-23), p. 630-
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Energies, MDPI AG, Vol. 14, No. 9 ( 2021-04-23), p. 2423-
    Abstract: Repairing materials are well-known to play an important role in rehabilitating and extending the service life for hydraulic concrete structures. However, current underwater repairing materials possess several problems, including insufficient bond tensile strength, inconsistency with the deformation of the old substrate, and insufficient underwater self-sealing ability. In the present paper, an experimental study was carried out to evaluate the influence of silica nanoparticles (SNs) on the properties of underwater composite-repairing materials. The underwater deformation, impermeability, bond tensile strength, and compressive strength of the SN-modified underwater composite-repairing materials were used as the properties’ evaluation indices. The results show that, within a certain range, the performance of the repairing material increase with increased SN percent. The deformability, impermeability grade, underwater bond tensile strength, and compressive strength of the SN-modified composite underwater repairing materials are 2.2%, 8, 2.91 MPa, and 115.87 MPa, respectively, when the mass ratio of the mortar, the curing agent and the SNs is 8:1:0.002. The proposed material is employed to repair the dam for a hydropower station in Guizhou province, China. Results show the seepage discharge is reduced by 8.6% when the dam is repaired. The annual average generating capacity is increased by 1.104 × 105 kWh. Meanwhile, CO2 and NOx emissions are reduced by 1.049 × 105 and 220.8 kg annually, respectively.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 3 ( 2023-01-20), p. 2053-
    Abstract: Fatty liver is one of the most pervasive liver diseases worldwide. Probiotics play an important role in the progression of liver disease, but their effects on host regulation are poorly understood. This study investigated the protective effects of lactobacillus gasseri (L. gasseri) against high-cholesterol diet (HCD)-induced fatty liver injury using a zebrafish larvae model. Liver pathology, lipid accumulation, oxidative stress and hepatic inflammation were evaluated to demonstrate the changes in a spectrum of hepatic injury. Moreover, multiple indexes on host gene expression profiles were comprehensively characterized by RNA screening. The results showed that treatment with L. gasseri ameliorated HCD-induced morphological and histological alterations, lipid regulations, oxidative stress and macrophage aggregation in the liver of zebrafish larvae. Furthermore, the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that the core pathways of L. gasseri regulation were interleukin-17 (IL-17) signaling, phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, the regulation of lipolysis and adipocytes and fatty acid elongation and estrogen signaling. The genes at key junction nodes, hsp90aa1.1, kyat3, hsd17b7, irs2a, myl9b, ptgs2b, cdk21 and papss2a were significantly regulated by L. gasseri administration. To conclude, the current research extends our understanding of the protective effects of L. gasseri against fatty liver and provides potential therapeutic options for fatty liver treatment.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 14 ( 2022-07-11), p. 7641-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 14 ( 2022-07-11), p. 7641-
    Abstract: Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body’s metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 17 ( 2020-09-02), p. 6356-
    Abstract: Short-chain fatty acids (SCFAs), particularly acetate, propionate and butyrate, are mainly produced by anaerobic fermentation of gut microbes. SCFAs play an important role in regulating energy metabolism and energy supply, as well as maintaining the homeostasis of the intestinal environment. In recent years, many studies have shown that SCFAs demonstrate physiologically beneficial effects, and the signalling pathways related to SCFA production, absorption, metabolism, and intestinal effects have been discovered. Two major signalling pathways concerning SCFAs, G-protein-coupled receptors (GPRCs) and histone deacetylases (HDACs), are well recognized. In this review, we summarize the recent advances concerning the biological properties of SCFAs and the signalling pathways in inflammation and glucose and lipid metabolism.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...