GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • S. Karger AG  (7)
  • Zhao, Jie  (7)
Material
Publisher
  • S. Karger AG  (7)
Language
Years
FID
  • 1
    Online Resource
    Online Resource
    S. Karger AG ; 2018
    In:  Cellular Physiology and Biochemistry Vol. 45, No. 4 ( 2018), p. 1472-1486
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 45, No. 4 ( 2018), p. 1472-1486
    Abstract: Background/Aims: Hypertrophic ligamentum flavum (LF) is a major cause of lumbar spinal stenosis. Our previous work showed that high levels of lysophosphatidic acid (LPA) expression are positively correlated with LF hypertrophy. This study aimed to further unveil how LPA regulates LF hypertrophy Methods: We studied LPAR1 expression in human LF cells using PCR and western blotting. Cell viability cell cycle, apoptosis rate and molecular mechanisms were assayed in LPAR1 knockdown or overexpression LF cells. LF hypertrophy and the molecular mechanism was confirmed in human samples and in in vivo studies. Results: The expression of LPA and its receptor LPAR1 is significantly higher in tissues or cells harvested from hypertrophic LF compared to healthy controls. Moreover, LPA promoted LF cell proliferation by interacting with LPAR1. This conclusion is supported by the fact that depletion or overexpression of LPAR1 changed the effect of LPA on LF cell proliferation. LPA also inhibits apoptosis in LF cells through the receptor LPAR1. Importantly, we demonstrated that the LPA-LPAR1 interaction initiated Akt phosphorylation and determined cell proliferation and apoptosis. Our in vitro findings were supported by our in vivo evidence that lyophilized LPA significantly induced LF hypertrophy via the LPAR1-Akt signaling pathway. More importantly, targeted inhibition of LPAR1 by Ki16425 with a gel sponge implant effectively reduced LPA-associated LF hypertrophy. Taken together, these data indicate that LPA binds to the receptor LPAR1 to induce LF cell proliferation and inhibit apoptosis by activating AKT signaling cascades. Targeting this signaling cascade with Ki16425 is a potential therapeutic strategy for preventing LF hypertrophy. Conclusion: LPA-LPAR1-Akt activation is positively correlated with the proliferation and survival of LF cells. LPAR1 could be a target for new drugs and the development of new therapeutic methods for treating LF hypertrophy.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 47, No. 1 ( 2018), p. 428-439
    Abstract: Background/Aims: In the current study, we performed an integrated analysis of genome-wide methylation and gene expression data to find novel prognostic genes for lower-grade gliomas (LGGs). Methods: First, TCGA methylation data were used to identify prognostic genes associated with promoter methylation. Second, candidate genes that were stably regulated by promoter methylation were explored. Third, Cox proportional hazards regression analysis was used to generate a prognostic signature, and the signature genes were used to construct a survival risk score system. Results: Three genes (EMP3, GSX2 and EMILIN3) were selected as signature genes. These three signature genes were used to construct a survival risk score system. The high-risk group exhibited significantly worse overall survival (OS) and relapse-free survival (RFS) as compared to the low-risk group in the TCGA dataset. The association of the three-gene prognostic signature with patient’ survival was then validated using the CGGA dataset. Moreover, Kaplan-Meier plots showed that the three-gene prognostic signature risk remarkably stratified grade II and grade III patients in terms of both OS and RFS in the TCGA cohort. There was also a significant difference between the low- and high-risk groups in IDH wild-type glioma patients, indicating that the three-gene signature may be able to help in predicting prognosis for patients with IDH wild-type gliomas. Conclusion: We identified and validated a three-gene (EMP3, GSX2 and EMILIN3) prognostic signature in LGGs by integrating multidimensional genomic data from the TCGA and CGGA datasets, which may help in fine-tuning the current histology-based tumors classification system and providing better stratification for future clinical trials.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    S. Karger AG ; 2018
    In:  Cellular Physiology and Biochemistry Vol. 48, No. 1 ( 2018), p. 215-226
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 48, No. 1 ( 2018), p. 215-226
    Abstract: Background/Aims: Mechanical stimulation and WNT signalling have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding the regulation of WNT signalling molecule expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. Methods: Microarrays of BMSCs from elderly individuals or patients with osteoporosis (GSE35959) from the GEO database were analysed using GeneSight-Lite 4.1.6 (BioDiscovery) and C2 curated gene sets downloaded from Molecular Signatures Database (MSigDB). Realtime PCR and western blotting were used to measure the expression of the indicated genes. ALP and Alizarin red staining were used to evaluate the osteogenesis of BMSCs. Results: In this study, we investigated whether mechanical loading directly regulates the expression of WNT signalling molecules and examined the role of WNT signalling in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found downregulation of the GPCR ligand binding gene set in the BMSCs of patients with osteoporosis. Then, we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. FZD4 was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, and the JNK signalling pathway was activated. FZD4 knockdown inhibited the mechanical stimuli-induced osteogenesis and JNK activity. More importantly, we found an activating effect of WNT5A and FZD4 that regulated bone formation in response to hindlimb unloading in mice, and pretreatment with WNT5A or activation of the expression of FZD4 partly rescued the osteoporosis caused by mechanical unloading. Conclusions: Our results demonstrate, for the first time, that mechanical stimulation alters the expression of genes involved in the osteogenic differentiation of BMSCs via the direct regulation of FZD4 and that therapeutic WNT5A and FZD saRNA may be an efficient strategy for enhancing bone formation under mechanical stimulation.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    S. Karger AG ; 2007
    In:  American Journal of Nephrology Vol. 27, No. 5 ( 2007), p. 495-502
    In: American Journal of Nephrology, S. Karger AG, Vol. 27, No. 5 ( 2007), p. 495-502
    Abstract: 〈 i 〉 Background/Aims: 〈 /i 〉 Recent studies suggested the involvement of the Akt/mammalian target of rapamycin (mTOR) pathway in the pathogenesis of diabetic nephropathy. The effect of mTOR blockade by rapamycin in diabetic nephropathy was investigated, but in vivo study of rapamycin treatment in the course of early diabetes is still insufficient. This study was designed to determine the therapeutic effects of rapamycin on diabetic nephropathy at an early stage. 〈 i 〉 Methods: 〈 /i 〉 Diabetes was induced in Sprague-Dawley rats with streptozotocin, and rapamycin (1 mg/kg) was administered by daily gavage for 4 weeks. Renal structural changes and some factors involved in the early pathogenesis of diabetic nephropathy were tested. The activation level of the Akt/mTOR pathway was also determined. 〈 i 〉 Results: 〈 /i 〉 Rapamycin treatment reduced albuminuria, glomerular enlargement, glomerular basement membrane thickening, renal macrophage recruitment, and levels of renal mRNA expression of proliferating cell nuclear antigen, transforming growth factor-β 〈 sub 〉 1 〈 /sub 〉 , vascular endothelial growth factor, and monocyte chemoattractant protein-1 without change in blood glucose level and blood pressure in experimental diabetic rats. In addition, treatment with rapamycin also down-regulated the enhanced levels of renal p-Akt, phospho-p70S6 kinase, and phospho-ribosomal S6 protein in diabetic rats. 〈 i 〉 Conclusions: 〈 /i 〉 Rapamycin treatment can prevent the early renal structural changes of diabetes in experimental rats, and thus halt the early steps of the development of diabetic nephropathy. mTOR blockade might be beneficial for the treatment of diabetic nephropathy.
    Type of Medium: Online Resource
    ISSN: 0250-8095 , 1421-9670
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2007
    detail.hit.zdb_id: 1468523-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Kidney and Blood Pressure Research, S. Karger AG, Vol. 43, No. 1 ( 2018), p. 220-233
    Abstract: 〈 b 〉 〈 i 〉 Background/Aims: 〈 /i 〉 〈 /b 〉 The objective of this study is to evaluate the hypouricemic and nephroprotective effects of an active fraction from 〈 i 〉 Polyrhachis vicina Roger 〈 /i 〉 (AFPR) in potassium oxonate-induced hyperuricemic rats. 〈 b 〉 〈 i 〉 Methods: 〈 /i 〉 〈 /b 〉 Hyperuricemia was induced by potassium oxonate in male rats. AFPR was orally administered to hyperuricemic rats for 12 consecutive weeks. Serum, liver and kidney samples were collected for effects and mechanism analysis. The levels of serum uric acid (SUA) were measured by the phosphotungstic acid method, xanthine oxidase (XOD) activity in the hepatic and serum samples were measured by ultraviolet spectrophotometry, serum levels of interleukin-1 (IL-1β), interleukin-1 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by ELISA, the levels of serum creatinine (SCr), blood urea nitrogen (BUN), super oxide dismutase (SOD) and malondialdehyde (MDA) in serum were determined by colorimetric method. Protein expression of renal URAT1, GLUT9, and OAT1 were analyzed by Western blot. 〈 b 〉 〈 i 〉 Results: 〈 /i 〉 〈 /b 〉 AFPR significantly decreased the levels of SUA, serum and hepatic XOD, SCr, BUN, and MDA as well as increased SOD. In addition, AFPR treatment significantly reduced the levels of proinflammatory cytokines in serum, including IL-1β, IL-6 and TNF-α. Moreover, we found the significant decrease in protein expression of URAT1 and GLUT9, and the significant increase in protein expression of OAT1 in the kidney in AFPR treated groups compared to the model groups of hyperuricemia. 〈 b 〉 〈 i 〉 Conclusion: 〈 /i 〉 〈 /b 〉 These findings suggest that AFPR has anti-hyperuricemic activity attributed to the inhibition of uric acid generation in the liver and probably to the enhancement of urate excretion in the kidney, and possess nephroprotective effect in hyperuricemic rats due to its anti-inflammatory and antioxidant activities.
    Type of Medium: Online Resource
    ISSN: 1420-4096 , 1423-0143
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2018
    detail.hit.zdb_id: 1482922-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 36, No. 2 ( 2015), p. 655-669
    Abstract: Object: To explore the effects of HuangQi decoction on tubulointerstitial fibrosis in mice and the Wnt/β-catenin signaling pathway. Methods: Unilateral ureteral obstruction (UUO) model was used. A total of 120 C57/BL mice were randomly divided into 6 groups, sham group, sham+HuangQi decoction group (1.08 g/kg), UUO group, UUO+HuangQi decoction group (0.12, 0.36, 1.08 g/kg). Immunohistochemical analysis, RT-PCR and Western blot were employed to examine the proteins and genes related to the Wnt/β-catenin signaling pathway. Results: In UUO mice models, expression levels of Wnt3,4, Frizzled4, LRP5,6, β-catenin, LEF-1, TCF-1, Snail, MMP2,7 genes were positively correlated with the degree of renal tubulointerstitial fibrosis, while expression levels of GSK-3β, Axin, APC, CK1 were negatively correlated. HuangQi decoction could down-regulate expression levels of Wnt3,4, Frizzled4, LRP5,6, β-catenin, LEF-1, TCF-1, Snail, Twist, MMP2,7 and up-regulate expression levels of GSK-3β, Axin, APC, CK1 and E-cadherin. Conclusion: HuangQi decoction could effectively inhibit the up-regulation of Wnt/β-catenin signaling pathway induced by UUO, implying a possible role in improving renal interstitial fibrosis.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2015
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    S. Karger AG ; 2016
    In:  Cellular Physiology and Biochemistry Vol. 38, No. 5 ( 2016), p. 1761-1774
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 38, No. 5 ( 2016), p. 1761-1774
    Abstract: Objective: Traditional Chinese Medicine compound HuangQi decoction is widely used in clinical treatment of chronic kidney disease, but its role on renal interstitial fibrosis and the underlying mechanism remains unclear. The aim of this study is to investigate the effect of HuangQi decoction on renal interstitial fibrosis and its association with the TGF-β/Smad signaling pathway Methods: A total of 120 C57/BL mice were randomly divided into six groups: sham group, sham plus high-dose HuangQi decoction (1.08g/kg) group, unilateral ureteral obstruction (UUO) model group, and UUO model plus low to high doses of HuangQi decoction (0.12g/kg, 0.36g/kg and 1.08g/kg respectively) groups. Animals were sacrificed 14 days after the administration and ipsilateral kidney tissue was sampled for pathologic examinations. Immunohistochemistry, PCR and western blot were used to detect the expressions of related molecules in the TGF-β/Smad signaling pathway. TGF-β1 was used in in vitro experiments to induce human kidney proximal tubule epithelial cells (HK2). Results: HuangQi decoction improved ipsilateral kidney fibrosis in UUO mice and downregulated the expressions of TGF-β1, TβRI, TβRII, Smad4, Smad2/3, P-Smad2/3, α-SMA, collagen type I, III and IV in a dose-dependent manner while upregulated the expression of Smad7 in the same fashion. Similar results were found in in vitro studies. Conclusion: The protective effect of HuangQi decoction for unilateral ureteral obstruction kidney damage in mice was mediated by downregulating the TGF-β/Smad signaling pathway.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2016
    detail.hit.zdb_id: 1482056-0
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...