GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 12 ( 2015), p. 120602-
    Abstract: Optical clocks are considered as promising candidates for redefining the second in the International System of Units. Compared with microwave clocks, optical clocks are powerful tools for the fundamental research such as the constancy of the fundamental constants, the validity of Einstein’s theory of general relativity, and the predictions of quantum electrodynamics. Recently two research groups have demonstrated the optical clocks with an unprecedented precision level of 10-18, which is two orders better than the present primary frequency standard. Using two Sr optical clocks and three Cs fountain clocks, SYRTE group has demonstrated the definition of second with optical clocks.#br#For redefining the second with optical clocks in the future, the optical clocks from the remote laboratories should have a high precision and the frequency of the optical clocks need to be transferred over a long distance, with extremely high precision. Unfortunately the conventional means of frequency transfer such as two-way satellite time and frequency transfer can reach a 10-16 level in one day which is far below the requirement for an optical clocks. Various methods have been developed to transfer optical frequency signal via optical fibers. Especially a research group from Germany has achieved a frequency transfer stability of 10-19 level in hundreds of seconds with a fiber length of 1840 km.#br#We demonstrate the recent development of optical frequency transfer over a 70-km fiber spool at National Time Service Center. The measurement shows that the compensation for the fiber noise is close to the limitation induced by the fiber delay for the Fourier frequency from 1 Hz to 250 Hz. The transfer stability (Allan deviation) of the fiber link is 1.2×10-15 in 1 s averaging time, and 1.4×10-18 in 10000 s. A preliminary test of the optical frequency transfer over a 100-km spooled fiber is achieved with a stability of roughly one order worse than the 71 km result, 5×10-15 in 1 s.#br#We demonstrate a new scheme of remote compensation for optical frequency transfer via fibers against conventional local compensation method. This new scheme has the advantage of great simplification of the local site, which can find applications in massive extension of star network. The key feature is that we transfer the mixture of the round-trip signal and local reference to the remote user’s end via an auxiliary fiber. At remote site, the fiber noise is measured and compensated by AOM2 accordingly.#br#Transfer stabilities of 13×10-15 in 1 s averaging time and 4.8×10-18 in 10000 s are achieved with the remote fiber noise compensation via a 25 km fiber spool. The demonstrated transfer stability is comparable to that obtained by the local fiber noise compensation method.#br#The future star fiber network of optical frequency transfer can benefit from this method, because the simpler local setup is required and even can be shared in the central site for multitudinous remote users.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 8 ( 2017), p. 080601-
    Abstract: Ultra-stable reference cavity with high finesse is a crucial component in a narrow-linewidth laser system which is widely used in time and frequency metrology, the test of Lorentz invariance, and measure of gravitational wave. In this paper, we report the recent progress of the self-made spherical reference cavity, aiming at the future space application. The main function of cavity is the reference of ultra-stable laser, which is the local reference oscillation source of space optical clock. The diameter of the designed spherical cavity spacer made of ultra-low expansion glass is 80 mm, and the cavity length is 78 mm, flat-concave mirrors configuration, and the radius of the concave mirror is 0.5 m. The support structure is designed to have two 3.9 mm-radius spherical groves located at the poles of the sphere along the diameter direction (defined as support axis), and a 53 angle between the support axis and the optical axis. The mechanic vibration sensitivities of the cavity along and perpendicular to the optical axis are both calculated by finite element analysis method to be below 110-10/g. Five-axis linkage CNC machining sphere forming technology is applied to S80 mm spherical surface processing with spherical contour degree up to 0.02. After a three-stage surface polishing processes, the fused silicamirror substratessurface roughness is measured to be less than 0.2 nm (rms). Implementing double ion beam sputtering technique for mirror coating, the reflection of the coating achieves a reflectivity of 99.999% and a loss of 4 ppm for 698 nm laser. The coating surface roughness is measured to be 0.3 nm (rms). The cavity spacer and the mirror are bonded by dried optical contact. In order to improve the thermal noise characteristics of the cavity, an ultra low expansion ring is contacted optically to the outer surface of the mirror. The cavity is characterized by ring-down spectroscopy, and the finesse is around 195000. With the help of a home-made 698 nm ultra narrow line-width laser, the cavity line-width is measured to be 9.8 kHz by sweeping cavity method. A 698 nm semiconductor laser is locked to this spherical cavity by PDH technology, and the cavity loss is measured to be5 ppm.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 19 ( 2015), p. 190601-
    Abstract: Ultra-stable lasers at optical communication wavelengths have important applications in developing optical frequency transfer via optical fibers. We report the recent development of a 1550 nm stable laser system built at National Time Service Center and its preliminary application in optical frequency transfer via laboratory fibers. In the experiment, the conventional Pound-Drever-Hall(PDH) frequency stabilization technology is implemented to achieve the ultra-stable laser at the wavelength of 1550 nm. The output of a single laser source is split and locked onto the resonant frequency of two independent reference cavities, of 344000 and 296000 respectively. The frequency of the laser source is actively stabilized to the first reference cavity by piezo and external frequency shifters simultaneously and the total control bandwidth is measured to be 50 kHz. Then the laser frequency is shifted and stabilized to the second reference cavity by an acousto-optical modulator. A 5 m long single-mode fiber is used to bring the first laser beam to the second reference cavity which unfortunately induces unexpected phase noise by environmental distortions. The laser linewidth broadened is determined to be 0.27 Hz by the beat note measurement between the input and output beams of the fiber. To evaluate the frequency stability of the laser, the frequency control signal within the control bandwidth of the second stable laser system is analyzed by a spectrum analyzer and a frequency counter. The control signal shows a Lorentz linewidth of 2.7 Hz and a frequency stability of 2.510-14/s, corresponding to a single laser linewidth of 1.9 Hz with a frequency stability of 1.710-14/s if the two stable lasers have similar frequency stability. Applying this ultra-stable laser system as the laser source for the fiber-based optical frequency transfer, a short-term frequency transfer stability of 7.510-17/s is demonstrated through a 50 km-long fiber spool, while a frequency transfer stability of 2.410-16/s is achieved by a similar setup except that the laser source is a kHz-level linewidth laser. In the experiment an Agilent 53232 A frequency counter is applied to record the beat note signal in the auto mode. In the end, we discuss the possible improvements of the stable laser system, including the miniaturization of the optical setup, optimization of the control bandwidth and shortening of the response time of control loop.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2014
    In:  Acta Physica Sinica Vol. 63, No. 9 ( 2014), p. 090601-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 9 ( 2014), p. 090601-
    Abstract: We have investigated the vibrational sensitivity of a horizontal-mounted spherical reference cavity, which can be applied to develop an ultra-stable laser. Effects of different magnitudes of height and area as well as acceleration of the cavity support points on the length variation of the cavity are studied. When the cavity support points are totally constrained, the vibration sensitivity can be reduced to below 3.0×10-10/g. After performing extensive numerical simulations, we can find the optimal support position. According to the obtained results we present the mounting scheme of the spherical cavity. Taking into consideration the machining errors, near-horizontal mounting, and unsymmetrical mounting of the cavity, we can describe quantitatively the length variation of the cavity caused by these three factors. We also discuss the contribution of the second order effect to the length variation of the cavity.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 14 ( 2018), p. 144204-
    Abstract: The frequency entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) possess wide applications in quantum optics and relevant fields.To facilitate the practical quantum information technologies,particularly in optical fiber links,a frequency entangled source at telecommunication wavelength with features of compactness,portability,high efficiency and miniaturization is highly desired.In this paper,we report the experimental generation of a miniaturized frequency entangled source in telecommunication band from a 10 mm-long type-Ⅱ periodically poled lithium niobate (PPLN) waveguide pumped by a 780 nm distributed Bragg reflector (DBR) laser diode.The frequency entangled photon pairs generated by SPDC possess wide applications in quantum optics and relevant fields.When the DBR laser diode is driven by a current of 170 mA at a temperature controlled to 20℃,the output power is measured to be 70.4 mW with a central wavelength of 780.585 nm.Under this pump,the orthogonally-polarized photon pairs are generated and output from the PPLN waveguide.After filtering out the remaining pump by three high-performance long-pass filters mounted on an adjustable U-type fiber bench,the photon-pair generation rate,spectral and temporal properties of the generated frequency entangled source are measured.The results show that the generation rate of the photon pairs,after being corrected for the detection efficiencies of the single photon detectors and the optical losses,is achieved to be 1.86×107 s-1 at a pump power of 44.9 mW (coupled into the waveguide).Optimizing the working temperature of the waveguide and fixing it at 46.5℃,the frequency degeneracy of the SPDC generated photon pairs is realized.Based on the coincidence measurement setup together with two infrared spectrometers,the spectra of the signal and idler photons are obtained with their center wavelengths of 1561.43 nm and 1561.45 nm,and their 3-dB bandwidths of 3.62 nm and 3.60 nm respectively.The joint spectrum of the photon pair is observed,showing a joint spectrum bandwidth of 3.18 nm.The degree of frequency entanglement is quantified to be 1.13 according to the bandwidth ratio between the single photon spectrum and the joint spectrum.Furthermore,based on the Hong-Ou-Mandel (HOM) interferometric coincidence measurement setup,a visibility of about 96.1% is observed,which indicates the very good frequency indistinguishibility of the down-converted biphotons.The measured 3-dB width of the HOM dip is 1.47 ps and shows good agreement with the measured single-photon spectral bandwidth.The experimental results lay a solid foundation for developing portable,miniaturized frequency entangled sources at telecommunication band for the further applications in quantum information areas,such as quantum time synchronization.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 13 ( 2016), p. 134203-
    Abstract: In this paper, the noise filtering effect on a femtosecond laser source via a broadband passive cavity is analyzed in detail. The results show that a passive optical cavity not only can be used as a low-pass noise filter, but also can inter-convert the phase and amplitude fluctuations of a light beam after transmission or reflection. Therefore, by measuring the intensity noise of the light field under test after transmission and reflection from a passive cavity, its phase noise properties can be explored. Based on this theoretical model, an eight-mirror ring passive cavity with a finesse of 1500 and a free spectral range of 75 MHz is designed and built. With a commercial Ti:sapphire femtosecond laser as a source, its intensity noises after transmission and reflection from the above cavity are measured with home-made self-homodyne detection setup. Furthermore, with the help of the noise conversion model of the passive cavity, the phase noise of the femtosecond laser as well as its evolution through the cavity transmission and reflection is indirectly derived. The result shows that after transmission through the passive cavity, both the amplitude and phase noise of the femtosecond laser source are evidently suppressed and reach the shot noise limit at the analyzing frequency of 2 MHz.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 14 ( 2013), p. 144206-
    Abstract: The frequency entangled biphoton source generated via spontaneous parametric down-conversion process (SPDC) has found numerous applications in quantum information processing and relevant fields. We report on an experimental generation of coincident-frequency entanglement from periodically poled potassium titanyl phosphate, pumped by an ultra-short pulsed optical source with duration less than 20 fs. Based on the Hong-Ou-Mandel interferometric coincidence measurement setup, a visibility of about 42% is demonstrated, which indicates degraded frequency indistinguishibility of the down-converted biphotons. Through theoretical investigation, such a degradation can be perfectly explained by the nonnegligible second-order dispersion terms in the Taylor-expanded phase mismatching function for the case of ultra-broadband spectrum of the pulsed pump. The fitting to the experimental results is further used and perfect agreement is achieved. The results imply that the spectral bandwidth of the pump can affect the generated coincident-frequency entanglement.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 19 ( 2014), p. 194206-
    Abstract: The frequency entangled biphoton source generated via spontaneous parametric down-conversion (SPDC) process has found important applications in the fields of quantum clock synchronization, quantum communication, quantum information processing, etc. As quantum technologies evolve, quantitative characterization of the frequency entanglement becomes necessary and has been implemented by measuring the spectral properties of the biphoton state. However, due to the high dark rate and low quantum efficiency of the InGaAs single-photon detectors, direct measurement of the spectral properties of the biphoton state at optical communication wavelength is hard to implement. In this paper, we report the measurement of the spectral properties of a biphoton state at optical communication wavelength which is generated from periodically poled potassium titanyl phosphate (PPKTP) pumped by an ultra-short pulsed optical source at 787 nm. Based on the coincidence measurement setup together with two infrared spectrometers, the spectra of the signal and idler photons are obtained with their center wavelengths being 1574.4 nm and 1574.9 nm, while their 3-dB bandwidths being 35.3 nm and 37.6 nm respectively. The joint spectrum of the photon pair is observed as well and shows a coincident-frequency entanglement and a joint spectrum bandwidth of 3 nm. According to the ratio of the single-photon spectral bandwidth to the joint spectral bandwidth of the photon pairs, the degree of frequency entanglement is quantified to be 12, denoting a relatively high quality of the entanglement.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 19 ( 2014), p. 194203-
    Abstract: The intensity noise in a 1560 nm single frequency fiber laser after passing through an optical mode cleaner is analyzed both theoretically and experimentally. Experimental measurement shows that in addition to the evident suppression of intensity noise by the mode cleaner, there exist induced observable periodic fluctuations in the analyzing frequency range of 2 to 12 MHz, as well as the amplification of the intensity noise at low frequencies. The above results cannot be explained by the present mode cleaner model for noise suppression. In this paper, we propose a new theoretical model, in which the mode cleaner is considered equivalent to a delay line and through it the phase-noise of the fiber laser is partially converted to the intensity noise. The phase-induced relative intensity noise (RIN) amplitude is jointly determined by the laser linewidth, the mode cleaner linewidth, and the analyzing frequency. The theoretical analysis shows a very good agreement with the experimental results. The noise suppression effect of the acoustic optical modulator is further analyzed by inserting it into the setup and providing a frequency modulation for it. We have observed an evident improvement of the mode cleaner locking, while the bandwidth of the laser is slightly suppressed from 26 to 16kHz, and the degradation of the measured intensity noise after the mode cleaner is also moderate. The theoretical analysis according to our proposed model fits well with this result. This result further confirms that the phase-induced intensity noise has no direct connection to the mode cleaner locking quality. Through the above analysis, a complete theoretical mode for analyzing the noise suppression by a mode cleaner is built.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2015
    In:  Acta Physica Sinica Vol. 64, No. 16 ( 2015), p. 160308-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 16 ( 2015), p. 160308-
    Abstract: The cesium fountain clock as primary frequency standard is widely used in the areas, such as time-keeping system, satellite navigation, fundamental physics research, etc. The principle of operation of cesium fountain clock is introduced. The noise source and frequency shift term are ananlyzed. The major noise source influencing frequency stability are cold atom loading time, microwave phase noise related to Dick effect, and detection laser frequency noise. The major frequency bias influencing frequency uncertainty is blackbody radiation frequency shift,cold atom collision frequency shift,distributed cavity phase frequency shift and microwave leakage frequency shift.The key technique to achieve highperformance cesium fountain clock is sumerized. The application of cesium fountain clock is presented. The status of space cesium clock and future primary frequency standard of optical clock are shown.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 203490-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...