GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Zhang, Yuhao  (1)
  • Chemistry/Pharmacy  (1)
Material
Language
Years
Subjects(RVK)
  • Chemistry/Pharmacy  (1)
RVK
  • 1
    In: Journal of The Electrochemical Society, The Electrochemical Society, Vol. 169, No. 4 ( 2022-04-01), p. 046512-
    Abstract: Two-dimensional g-C 3 N 4 nanosheets are synthesized by high-temperature calcination. The prepared g-C 3 N 4 is used further to synthesize a 2D/0D composite series based on g-C 3 N 4 /Zn 0.5 Cd 0.5 S heterojunction composite with varied amounts of g-C 3 N 4 . The structure, microscopic morphology, photoelectric and photocatalytic performance, and the mechanism for enhancement of photocatalytic performance of the samples are studied through various characterization methods. Microstructural studies revealed that 0D Zn 0.5 Cd 0.5 S nanoparticles (ca. 3 ∼ 5 nm) were uniformly dispersed over the surface of the g-C 3 N 4 and thus the formation of a heterostructure. The photo-electrochemical test shows that an appropriate amount of g-C 3 N 4 modification (10%-C 3 N 4 /Zn 0.5 Cd 0.5 S) can effectively improve photogenerated carriers’ separation and transfer efficiency. Besides, the hydrogen production performance of the g-C 3 N 4 /Zn 0.5 Cd 0.5 S samples first increased and then decreased with the amount of g-C 3 N 4 . The photocatalytic activity of the 10%-C 3 N 4 /Zn 0.5 Cd 0.5 S showed the highest hydrogen production of 3.53 mmol·g −1 ·h −1 , which is 2.8 times than that of pure Zn 0.5 Cd 0.5 S (1.26 mmol·g −1 ·h −1 ). The enhanced photocatalytic performance is attributed to the introduced g-C 3 N 4 that can supply more activity sites and lead to the formation of the heterojunction across the interface, which effectively improves the separation and migration of photogenerated charges. Designing this kind of sustainable, low cost, and efficient photocatalytic hydrogen production method that avoids the application of precious metals will provide a feasible solution to meet the increasing global energy demand and a sustainable future.
    Type of Medium: Online Resource
    ISSN: 0013-4651 , 1945-7111
    RVK:
    Language: Unknown
    Publisher: The Electrochemical Society
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...