GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Environmental and Experimental Botany Vol. 175 ( 2020-07), p. 104044-
    In: Environmental and Experimental Botany, Elsevier BV, Vol. 175 ( 2020-07), p. 104044-
    Type of Medium: Online Resource
    ISSN: 0098-8472
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1497561-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Near Infrared Spectroscopy, SAGE Publications, Vol. 31, No. 1 ( 2023-02), p. 41-51
    Abstract: Approaches based on near infrared hyperspectral imaging (NIR-HSI) technology combined with machine learning have been developed to classify the leaves of hybrid cherry tomatoes and then identify the species of hybrid cherry tomato plants. The near infrared (NIR) hyperspectral images of 400 cherry tomato leaves (100 per species) were collected in the wavelength range of 900–1700 nm. Machine learning algorithms such as linear discriminant analysis (LDA), random forest (RF), and support vector machine (SVM) were employed to construct leaf classification models with the hyperspectral data preprocessed by Savitzky-Golay (SG) smoothing filter, first derivative (first Der) and standard normal variate (SNV). Principle of Component Analysis (PCA) was also used to reduce the data dimension and extract spectral features. It is revealed that the LDA model reaches the highest classification accuracy among the three machine learning algorithms and SNV can lead to higher improvement in model accuracy than other preprocessing methods of SG smoothing and first Der. Analysis based on PCA spectral feature extraction demonstrates that differences occur in internal material content in the leaves of cherry tomato plants with different species, which renders the models being able to distinguish between the species. Another important work was performed to reveal the different effects of the mesophyll and vein regions (VR) on the accuracy of the leaf classification model. It is demonstrated that the classification accuracy is improved by a value of 0.033 or 0.042 when mesophyll substitutes vein or whole leaf as regions of interest (ROI) to extract reflectance spectra for modeling. As a result, the accuracy of the training and test set respectively reached a high value of 0.998 and 0.973 for the LDA classification model combined with the SNV preprocessing method. The results propose that the use of mesophyll region (MR) as ROI can improve the performance of the leaf classification model, which provides a new strategy for efficient and non-destructive classification of different hybrid cherry tomato plants.
    Type of Medium: Online Resource
    ISSN: 0967-0335 , 1751-6552
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2021280-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Horticulture, Environment, and Biotechnology Vol. 60, No. 1 ( 2019-2), p. 49-57
    In: Horticulture, Environment, and Biotechnology, Springer Science and Business Media LLC, Vol. 60, No. 1 ( 2019-2), p. 49-57
    Type of Medium: Online Resource
    ISSN: 2211-3452 , 2211-3460
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2642577-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-10-4)
    Abstract: The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca 2+ ), hydrogen peroxide (H 2 O 2 ), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Agronomy, MDPI AG, Vol. 11, No. 3 ( 2021-03-12), p. 537-
    Abstract: To produce high-quality broccoli microgreens, suitable light intensity for growth and phytochemical contents of broccoli microgreens in an artificial light plant factory were studied. Broccoli microgreens were irradiated under different photosynthetic photon flux density (PPFD): 30, 50, 70 and 90 μmol·m−2·s−1 with red: green: blue = 1:1:1 light-emitting diodes (LEDs). The broccoli microgreens grown under 50 μmol·m−2·s−1 had the highest fresh weight, dry weight, and moisture content, while the phytochemical contents were the lowest. With increasing light intensity, the chlorophyll content increased, whereas the carotenoid content decreased. The contents of soluble protein, soluble sugar, free amino acid, flavonoid, vitamin C, and glucosinolates except for progoitrin in broccoli microgreens were higher under 70 μmol·m−2·s−1. Overall, 50 μmol·m−2·s−1 was the optimal light intensity for enhancement of growth of broccoli microgreens, while 70 μmol·m−2·s−1 was more feasible for improving the phytochemicals of broccoli microgreens in an artificial light plant factory.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Scientia Horticulturae, Elsevier BV, Vol. 242 ( 2018-12), p. 25-29
    Type of Medium: Online Resource
    ISSN: 0304-4238
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2016351-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecules, MDPI AG, Vol. 25, No. 20 ( 2020-10-19), p. 4788-
    Abstract: Selenium (Se) supplement was combined with different LED light qualities to investigate mutual effects on the growth, nutritional quality, contents of glucosinolates and mineral elements in broccoli sprouts. There were five treatments: CK:1R1B1G, 1R1B1G+Se (100 μmol L−1 Na2SeO3), 1R1B+Se, 1R2B+Se, 2R1B+Se, 60 μmol m−2 s−1 PPFD, 12 h/12 h (light/dark). Sprouts under a combination of selenium and LED light quality treatment exhibited no remarkable change fresh weight, but had a shorter hypocotyl length, lower moisture content and heavier dry weight, especially with 1R2B+Se treatment. The contents of carotenoid, soluble protein, soluble sugar, vitamin C, total flavonoids, total polyphenol and contents of total glucosinolates and organic Se were dramatically improved through the combination of Se and LED light quality. Moreover, heat map and principal component analysis showed that broccoli sprouts under 1R2B+Se treatment had higher nutritional quality and health-promoting compound contents than other treatments. This suggests that the Se supplement under suitable LED lights might be beneficial to selenium-biofortified broccoli sprout production.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Botanical Studies, Springer Science and Business Media LLC, Vol. 59, No. 1 ( 2018-12)
    Abstract: Cucumber ( Cucumis sativus L.) is a typical monoecism vegetable with individual male and female flowers, which has been used as a plant model for sex determination. It is well known that light is one of the most important environmental stimuli, which control the timing of the transition from vegetative growth to reproductive development. However, whether light controls sex determination remains elusive. To unravel this problem, we performed high-throughput RNA-Seq analyses, which compared the transcriptomes of shoot apices between R2B1(Red light:Blue light = 2:1)-treated and R4B1(Red light:Blue light = 4:1)-treated cucumber seedlings. Results showed that the higher proportion of blue light in the R2B1 treatment significantly induced the formation of female flowers and accelerated female flowering time in this whole study. The genes related to flowering time, such as flowering locus T ( FT ) and SUPPRESSOR OF OVEREXPRESSION OF CO1 ( SOC1 ), were up-regulated after R2B1 treatment. Furthermore, the transcriptome analysis showed that up-regulation and down-regulation of specific DEGs (the differentially expressed genes) were primarily the result of plant hormone signal transduction after treatments. The specific DEGs related with auxin formed the highest percentage of DEGs in the plant hormone signal transduction. In addition, the expression levels of transcription factors also changed after R2B1 treatment. Thus, sex differentiation affected by light quality might be induced by plant hormone signal transduction and transcription factors. These results provide a theoretical basis for further investigation of the regulatory mechanism of female flower formation under different light qualities in cucumber seedlings.
    Type of Medium: Online Resource
    ISSN: 1999-3110
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2432110-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Scientia Horticulturae, Elsevier BV, Vol. 321 ( 2023-11), p. 112366-
    Type of Medium: Online Resource
    ISSN: 0304-4238
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2016351-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Agronomy, MDPI AG, Vol. 10, No. 7 ( 2020-06-27), p. 920-
    Abstract: The interacted effects of photoperiod and nutrient solution concentrations (NSCs) on nutritional quality and antioxidant and mineral content in lettuce were investigated in this study. There were a total of nine treatments by three photoperiods (12 h/12 h, 15 h/9 h, and 18 h/6 h), with a combination of three NSCs (1/4, 1/2, and 3/4 NSC). The contents of photosynthetic pigment, mineral element, and nutritional quality were markedly affected by the combination of photoperiod and NSC. The highest leaf number and plant weight were found in lettuce under the combination of 18–0.25X. There was a higher content of photosynthetic pigment in treatment of 15-0.25X. Shorter photoperiod (12 h/12 h and 15 h/9 h) and NSC (1/4 and 1/2 NSC) contributed to reduced nitrate contents and higher contents of free amino acid, soluble protein, and vitamin C. Longer photoperiod and lower NSC could increase soluble sugar content. The content of total P, K, and Ca exhibited a similar trend under the combination of photoperiod and NSC, with a higher content at 3/4 NSC under different photoperiods. Lower contents of total Zn and N were found under longer photoperiod. Moreover, higher antioxidant contents, including 2, 2-diphenyl-1-picrylhydrazyl (DPPH), value of ferric-reducing antioxidant power (FRAP), flavonoid, polyphenol, and anthocyanin were observed under shorter photoperiod, with the peak under 12-0.50X. Generally, 12-0.50X might be the optimal treatment for the improvement of the nutritional quality of lettuce in a plant factory that produced high-quality vegetables.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...