GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Zhang, Shuang-Nan  (5)
  • Physics  (5)
Material
Language
Years
Subjects(RVK)
  • Physics  (5)
RVK
  • 1
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Supplement Series Vol. 266, No. 1 ( 2023-05-01), p. 16-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 266, No. 1 ( 2023-05-01), p. 16-
    Abstract: The determination of the absolute and relative position of a spacecraft is critical for its operation, observations, data analysis, scientific studies, as well as deep-space exploration in general. A spacecraft that can determine its own absolute position autonomously may perform better than those that must rely on transmission solutions. In this work, we report an absolute navigation accuracy of ∼20 km using 16 day Crab pulsar data observed with Fermi’s Gamma-ray Burst Monitor (GBM). In addition, we propose a new method with the inverse process of the triangulation for joint navigation using repeated bursts like those from the magnetar SGR J1935+2154 observed by the Gravitational-wave High-energy Electromagnetic Counterpart All-sky Monitor and GBM.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2961-0
    detail.hit.zdb_id: 2006860-8
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Supplement Series Vol. 268, No. 1 ( 2023-09-01), p. 5-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 268, No. 1 ( 2023-09-01), p. 5-
    Abstract: The minimum variation timescale (MVT) of soft gamma-ray repeaters can be an important probe to estimate the emission region in pulsar-like models, as well as the Lorentz factor and radius of the possible relativistic jet in gamma-ray burst (GRB)–like models, thus revealing their progenitors and physical mechanisms. In this work, we systematically study the MVTs of hundreds of X-ray bursts (XRBs) from SGR J1935+2154 observed by Insight-HXMT, GECAM, and Fermi/Gamma-ray Burst Monitor from 2014 July to 2022 January through the Bayesian block algorithm. We find that the MVTs peak at ∼2 ms, corresponding to a light-travel time size of about 600 km, which supports the magnetospheric origin in pulsar-like models. The shock radius and the Lorentz factor of the jet are also constrained in GRB-like models. Interestingly, the MVT of the XRB associated with FRB 200428 is ∼70 ms, which is longer than that of most bursts and implies its special radiation mechanism. In addition, the median of MVTs is 7 ms, shorter than the median MVTs of 40 ms and 480 ms for short GRBs or long GRBs, respectively. However, the MVT is independent of duration, similar to GRBs. Finally, we investigate the energy dependence of MVT and suggest that there is a marginal evidence for a power-law relationship like GRBs, but the rate of variation is at least about an order of magnitude smaller. These features may provide an approach to identify bursts with a magnetar origin.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2961-0
    detail.hit.zdb_id: 2006860-8
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Supplement Series Vol. 265, No. 1 ( 2023-03-01), p. 17-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 265, No. 1 ( 2023-03-01), p. 17-
    Abstract: The Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor (GECAM) is a pair of microsatellites (i.e., GECAM-A and GECAM-B) dedicated to monitoring gamma-ray transients including the high-energy electromagnetic counterparts of gravitational waves, such as gamma-ray bursts, soft gamma-ray repeaters, solar flares, and terrestrial gamma-ray flashes. Since launch in 2020 December, GECAM-B has detected hundreds of astronomical and terrestrial events. For these bursts, localization is the key for burst identification and classification as well as follow-up observations in multiple wavelengths. Here, we propose a Bayesian localization method with Poisson data with Gaussian background profile likelihood to localize GECAM bursts based on the distribution of burst counts in detectors with different orientations. We demonstrate that this method can work well for all kinds of bursts, especially extremely short ones. In addition, we propose a new method to estimate the systematic error of localization based on a confidence level test, which can overcome some problems of the existing method in the literature. We validate this method by Monte Carlo simulations, and then apply it to a burst sample with accurate location and find that the mean value of the systematic error of GECAM-B localization is ∼2.°5. By considering this systematic error, we can obtain a reliable localization probability map for GECAM bursts. Our methods can be applied to other gamma-ray monitors.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2961-0
    detail.hit.zdb_id: 2006860-8
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal, American Astronomical Society, Vol. 935, No. 1 ( 2022-08-01), p. 10-
    Abstract: One month after launching the Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor, a bright thermonuclear X-ray burst from 4U 0614+09 was observed on 2021 January 24. We report the time-resolved spectroscopy of the burst and a hint of burst oscillation at 413 Hz with a fractional amplitude ∼2.0% (rms). This coincides with the burst oscillation previously discovered with Swift/Burst Alert Telescope (Strohmayer et al. 2008), and therefore supports the spin frequency of this source. This burst is a bright one in the normal bursts detected from 4U 0614+09, which leads to an upper limit of distance estimation of 3.1 kpc. The folded light curve during the burst oscillation shows a sinusoidal structure, which is consistent with previous observations.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2960-9
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Astronomical Society ; 2024
    In:  The Astrophysical Journal Supplement Series Vol. 270, No. 1 ( 2024-01-01), p. 3-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 270, No. 1 ( 2024-01-01), p. 3-
    Abstract: As a new member of the Gravitational-wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) after GECAM-A and GECAM-B, GECAM-C (originally called HEBS), which was launched on board the SATech-01 satellite on 2022 July 27, aims to monitor and localize X-ray and gamma-ray transients from ∼6 keV to 6 MeV. GECAM-C utilizes a similar design to GECAM but operates in a more complex orbital environment. In this work, we utilize the secondary particles simultaneously produced by the cosmic-ray events on orbit and recorded by multiple detectors to calibrate the relative timing accuracy between all detectors of GECAM-C. We find the result is 0.1 μ s, which is the highest time resolution among all GRB detectors ever flown and very helpful in timing analyses such as minimum variable timescale and spectral lags, as well as in time delay localization. Besides this, we calibrate the absolute time accuracy using the one-year Crab Pulsar data observed by GECAM-C and Fermi’s Gamma-ray Burst Monitor, as well as GECAM-C and GECAM-B. The results are 2.02 ± 2.26 μ s and 5.82 ± 3.59 μ s, respectively. Finally, we investigate the spectral lag between the different energy bands of the Crab Pulsar observed by GECAM and the Gamma-ray Burst Monitor, which is ∼ −0.2 μ s keV −1 .
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2024
    detail.hit.zdb_id: 2961-0
    detail.hit.zdb_id: 2006860-8
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...