GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Zhang, Shu-Miao  (2)
  • Biology  (2)
  • XA 52094  (2)
Material
Language
Years
Subjects(RVK)
RVK
  • 1
    In: Journal of Applied Physiology, American Physiological Society, Vol. 108, No. 4 ( 2010-04), p. 838-844
    Abstract: Modulation of intracellular calcium ([Ca 2+ ] i ) transient in response to β-adrenoceptor stimulation in the hearts of hindlimb unweighted (HLU) rats during simulated weightlessness has not been reported. In the present study, we adopted the rat tail suspension for 4 wk to simulate weightlessness. Effects of simulated microgravity on β-adrenoceptor responsiveness were then studied. Mean arterial blood pressure, left ventricular pressure (LVP), systolic function [maximum positive change in pressure over time (+dP/d t max )], and diastolic function [maximum negative change in pressure over time (−dP/d t max )] were monitored during the in vivo experiment. β-Adrenoceptor density was quantitated by radioactive ligand binding. Single rat ventricular myocyte was obtained by enzymatic dissociation method. ±dP/d t max , myocyte contraction, intracellular [Ca 2+ ] i transient, and L-type calcium current in response to β-adrenoceptor stimulation with isoproterenol were measured. Compared with the control group, no significant changes were found in heart weight, body weight, and mean arterial blood pressure, whereas LVP and ±dP/d t max were significantly reduced. LVP and ±dP/d t max were significantly attenuated in the HLU group in response to isoproterenol administration. In the in vitro study, the β-adrenoceptor density was unchanged. Effects of isoproterenol on electrically induced single-cell contraction and [Ca 2+ ] i transient in myocytes of ventricles in HLU rats were significantly attenuated. The enhanced L-type Ca 2+ current elicited by isoproterenol in cardiomyocytes was significantly decreased in the HLU group. The above results indicate that impaired function of L-type Ca 2+ current and decreased [Ca 2+ ] i transient cause the depressed responsiveness of the β-adrenoceptor stimulation, which may be partially responsible for the depression of cardiac function.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2010
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physiology, American Physiological Society, Vol. 114, No. 2 ( 2013-01-15), p. 238-244
    Abstract: Impairment of pulmonary endothelium function in the pulmonary artery is a direct result of chronic hypoxia. This study is to investigate the vasculoprotective effects of U50,488H (a selective κ-opioid receptor agonist) and its underlying mechanism in hypoxia-induced pulmonary artery endothelial functional injury. Chronic hypoxia was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, right ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI) were measured. The pulmonary vascular dysfunction, effect of nitric oxide synthase inhibitor (l-NAME) on the relaxation of U50,488H, and level of nitric oxide (NO) were determined. In vitro, the signaling pathway involved in the anti-apoptotic effect of U50,488H was investigated. Cultured endothelial cells were subjected to simulated hypoxia, and cell apoptosis was determined by TUNEL staining. U50,488H (1.25 mg/kg) significantly reduced RVP and RVHI in hypoxia. U50,488H markedly improved both pulmonary endothelial function (maximal vasorelaxation in response to ACh: 74.9 ± 1.8%, n = 6, P 〈 0.01 vs. hypoxia for 2 wk group) and increased total NO production (1.65 fold). U50,488H relaxed the pulmonary artery rings of the hypoxic rats. This effect was partly abolished by l-NAME. In cells, U50,488H both increased NO production and reduced hypoxia-induced apoptosis. Moreover, pretreatment with nor-binaltorphimine (nor-BNI, a selective κ-opioid receptor antagonist), PI3K inhibitor, Akt inhibitor or l-NAME almost abolished anti-apoptotic effect exerted by U50,488H. U50,488H resulted in increases in Akt and eNOS phosphorylation. These results demonstrate that pretreatment with U50,488H attenuates hypoxia-induced pulmonary vascular endothelial dysfunction in an Akt-dependent and NO-mediated fashion.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2013
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...