GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (8)
  • Zhang, Nan  (8)
Material
Publisher
  • MDPI AG  (8)
Language
Years
FID
  • 1
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 20, No. 1 ( 2018-12-21), p. 23-
    Abstract: Fatty acid desaturases are rate-limiting enzymes in long-chain polyunsaturated fatty acid biosynthesis. The transcription factor peroxisome proliferator-activated receptor alpha b (PPARαb) regulates lipid metabolism in mammals, however, the mechanism whereby PPARαb regulates fatty acid desaturases is largely unknown in fish. In this study, we report the full length cDNA sequence of Trachinotus ovatus fatty acid desaturase, which encodes a 380 amino acid polypeptide, possessing three characteristic histidine domains. Phylogenetic and gene exon/intron structure analyses showed typical phylogeny: the T. ovatus fatty acid desaturase contained a highly conserved exon/intron architecture. Moreover, functional characterization by heterologous expression in yeast indicated that T. ovatus desaturase was a fatty acid desaturase, with Δ4/Δ5/Δ8 Fad activity. Promoter activity assays indicated that ToFads6 desaturase transcription was positively regulated by PPARαb. Similarly, PPARαb RNA interference decreased ToPPARαb and ToFads6 expression at the mRNA and protein levels in a time-dependent manner. Mutation analyses showed that the M2 binding site of PPARαb was functionally important for protein binding, and transcriptional activity of the ToFads6 promoter was significantly decreased after targeted mutation of M2. Electrophoretic mobile shift assays confirmed that PPARαb interacted with the binding site of the ToFads6 promoter region, to regulate ToFads6 transcription. In summary, PPARαb played a vital role in ToFads6 regulation and may promote the biosynthesis of long-chain polyunsaturated fatty acids by regulating ToFads6 expression.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 16 ( 2020-08-18), p. 5916-
    Abstract: Toll-like receptors (TLRs), as important pattern recognition receptors, represent a significant component of fish immune systems and play an important role in resisting the invasion of pathogenic microorganisms. The TLR5 subfamily contains two types of TLR5, the membrane form of TLR5 (TLR5M) and the soluble form of TLR5 (TLR5S), whose detailed functions have not been completely elucidated. In the present study, we first identified two genes, TLR5M (ToTLR5M) and TLR5S (ToTLR5S), from golden pompano (Trachinotus ovatus). The full-length ToTLR5M and ToTLR5S cDNA are 3644 bp and 2329 bp, respectively, comprising an open reading frame (ORF) of 2673 bp, encoding 890 amino acids, and an ORF of 1935 bp, encoding 644 amino acids. Both the ToTLR5s possess representative TLR domains; however, only ToTLR5M has transmembrane and intracellular TIR domains. Moreover, the transcription of two ToTLR5s was significantly upregulated after stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and flagellin in both immune-related tissues (liver, intestine, blood, kidney, and skin) and nonimmune-related tissue (muscle). Furthermore, the results of bioinformatic and promoter analysis show that the transcription factors GATA-1 (GATA Binding Protein 1), C/EBPalpha (CCAAT Enhancer Binding Protein Alpha), and ICSBP (Interferon (IFN) consensus sequence binding protein) may play a positive role in moderating the expression of two ToTLR5s. Overexpression of ToTLR5M and ToTLR5S notably increases NF-κB (nuclear factor kappa-B) activity. Additionally, the binding assay revealed that two rToTLR5s can bind specifically to bacteria and pathogen-associated molecular patterns (PAMPs) containing Vibrio harveyi, Vibrio anguillarum, Vibrio vulnificus, Escherichia coli, Photobacterium damselae, Staphylococcus aureus, Aeromonas hydrophila, LPS, poly(I:C), flagellin, and peptidoglycan (PGN). In conclusion, the present study may help to elucidate the function of ToTLR5M/S and clarify their possible roles in the fish immune response to bacterial infection.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 21, No. 7 ( 2020-04-10), p. 2652-
    Abstract: Interferon (IFN) regulatory factor 1 (IRF1), a transcription factor with a novel helix–turn–helix DNA-binding domain, plays a crucial role in innate immunity by regulating the type I IFN signaling pathway. However, the regulatory mechanism through which IRF1 regulates type I IFN in fish is not yet elucidated. In the present study, IRF1 was characterized from golden pompano, Trachinotus ovatus (designated ToIRF1), and its immune function was identified to elucidate the transcriptional regulatory mechanism of ToIFNa3. The full-length complementary DNA (cDNA) of IRF1 is 1763 bp, including a 900-bp open reading frame (ORF) encoding a 299-amino-acid polypeptide. The putative protein sequence has 42.7–71.7% identity to fish IRF1 and possesses a representative conserved domain (a DNA-binding domain (DBD) at the N-terminus). The genomic DNA sequence of ToIRF1 consists of eight exons and seven introns. Moreover, ToIRF1 is constitutively expressed in all examined tissues, with higher levels being observed in immune-relevant tissues (whole blood, gill, and skin). Additionally, Cryptocaryon irritans challenge in vivo increases ToIRF1 expression in the skin as determined by Western blotting (WB); however, protein levels of ToIRF1 in the gill did not change significantly. The subcellular localization indicates that ToIRF1 is localized in the nucleus and cytoplasm with or without polyinosinic/polycytidylic acid (poly (I:C)) induction. Furthermore, overexpression of ToIRF1 or ToIFNa3 shows that ToIRF1 can notably activate ToIFNa3 and interferon signaling molecule expression. Promoter sequence analysis finds that several interferon stimulating response element (ISRE) binding sites are present in the promoter of ToIFNa3. Additionally, truncation, point mutation, and electrophoretic mobile shift (EMSA) assays confirmed that ToIRF1 M5 ISRE binding sites are functionally important for ToIFNa3 transcription. These results may help to illuminate the roles of teleost IRF1 in the transcriptional mechanisms of type I IFN in the immune process.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Genes, MDPI AG, Vol. 14, No. 2 ( 2023-02-13), p. 475-
    Abstract: The MMPs are endogenous proteolytic enzymes that require zinc and calcium as cofactors. MMP9 is one of the most complex matrix metalloproteinases in the gelatinase family and has many biological functions. In mammals, mmp9 is thought to be closely associated with cancer. However, studies in fish have rarely been reported. In this study, to understand the expression pattern of the ToMMP9 gene and its association with the resistance of Trachinotus ovatus to Cryptocaryon irritans, the sequence of the MMP9 gene was obtained from the genome database. The expression profiles were measured by qRT–PCR, the SNPs were screened by direct sequencing, and genotyping was performed. The ToMMP9 gene contained a 2058 bp ORF encoding a putative amino acid sequence of 685 residues. The homology of the ToMMP9 in teleosts was more than 85%, and the genome structure of ToMMP9 was conserved in chordates. The ToMMP9 gene was expressed in different tissues of healthy individuals and was highly expressed in the fin, the gill, the liver and the skin tissues. The ToMMP9 expression in the skin of the infected site and its adjacent sites increased significantly after C. irritans infection. Two SNPs were identified in the ToMMP9 gene, and the SNP (+400A/G) located in the first intron was found to be significantly associated with the susceptibility/resistance to C. irritans. These findings suggest that ToMMP9 may play an important role in the immune response of T. ovatus against C. irritans.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Fishes, MDPI AG, Vol. 8, No. 1 ( 2023-01-13), p. 52-
    Abstract: The golden pompano (Trachinotus ovatus) is one of the most economically valuable marine fishes in South China. Streptococcus agalactiae, an infectious Gram-positive bacterium that is highly destructive for golden pompano culture, has recently caused massive losses to the golden pompano industry. This study aimed to investigate the dynamic immune response of golden pompano to S. agalactiae infection, using RNA-seq analysis at two different time points after infection. Abundances of differentially expressed genes (DEGs) gradually increased in the liver and spleen 48–120 h post-infection, whereas those in the head kidney were lower at 120 h than at 48 h. Pathway enrichment analysis of DEGs revealed that genes related to the complement system were continuously transcribed between 48 and 120 h. Metabolic and immune-regulation-related pathways were highly enriched in the liver 48 h after infection. Transcriptome analysis was verified using quantitative PCR for eight genes with similar expression trends. This study revealed the inflammatory response of golden pompano after S. agalactiae infection, including inflammation-related chemokines and signaling pathways. Our findings provide a theoretical basis for studying S. agalactiae resistance in golden pompano and provide a reliable resource for the genetic breeding of fish.
    Type of Medium: Online Resource
    ISSN: 2410-3888
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2932929-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Marine Drugs, MDPI AG, Vol. 21, No. 10 ( 2023-09-25), p. 505-
    Abstract: Golden pompano, Trachinotus ovatus, as a highly nutritious commercially valuable marine fish, has become one of the preferred species for many fish farmers due to its rapid growth, wide adaptability, and ease of feeding and management. However, with the expansion of aquaculture scale, bacterial and parasitic diseases have also become major threats to the golden pompano industry. This study, based on comparative genomics, shows the possibility of preferential evolution of freshwater fish over marine fish by analyzing the phylogenetic relationships and divergence times of 14 marine fish and freshwater fish. Furthermore, we identified antimicrobial peptide genes from 14 species at the genomic level and found that the number of putative antimicrobial peptides may be related to species evolution. Subsequently, we classified the 341 identified AMPs from golden pompano into 38 categories based on the classification provided by the APD3. Among them, TCP represented the highest proportion, accounting for 23.2% of the total, followed by scolopendin, lectin, chemokine, BPTI, and histone-derived peptides. At the same time, the distribution of AMPs in chromosomes varied with type, and covariance analysis showed the frequency of its repeat events. Enrichment analysis and PPI indicated that AMP was mainly concentrated in pathways associated with disease immunity. In addition, our transcriptomic data measured the expression of putative AMPs of golden pompano in 12 normal tissues, as well as in the liver, spleen, and kidney infected with Streptococcus agalactiae and skin infected with Cryptocaryon irritans. As the infection with S. agalactiae and C. irritans progressed, we observed tissue specificity in the number and types of responsive AMPs. Positive selection of AMP genes may participate in the immune response through the MAPK signaling pathway. The genome-wide identification of antimicrobial peptides in the golden pompano provided a complete database of potential AMPs that can contribute to further understanding the immune mechanisms in pathogens. AMPs were expected to replace traditional antibiotics and be developed into targeted drugs against specific bacterial and parasitic pathogens for more precise and effective treatment to improve aquaculture production.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 11, No. 2 ( 2023-01-23), p. 262-
    Abstract: Golden pompano (Trachinotus ovatus) has become an economically important fish in China in the past decade. However, Cryptocaryon irritans, a parasitic ciliate, causes considerable economic losses in the mariculture of T. ovatus. To characterize the pathogenesis of C. irritans in T. ovatus, the pathological properties, immune-related enzyme activity and expression of the NEMO gene was analysed. The results from the histological sections showed that there was considerable metamorphosis and hyperplasia in the parasitized sites (skin) with leukocyte aggregation and mucous cell increases after C. irritans infection. Moreover, the activities of four enzymes, that is, alkaline phosphatase (AKP), acid phosphatase (ACP), superoxide dismutase (SOD) and lysozyme (LZM), were significantly increased in different tissues after C. irritans infection. Furthermore, the ORF of T. ovatus NF-kappa-B essential modulator (ToNEMO) measures 1650 bp, encoding 548 amino acids. The ToNEMO transcripts were universally expressed in all examined tissues, with higher levels being observed in the immune-relevant and central nervous tissues. The mRNA levels of ToNEMO after C. irritans infection were significantly increased in the gill, skin, liver, spleen and head kidney. These results suggested that ToNEMO might be involved in immune responses and helped to elucidate the physiological response after the C. irritans infection of fish.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Biology, MDPI AG, Vol. 12, No. 9 ( 2023-08-23), p. 1161-
    Abstract: The growth, development, and survival of fish, especially in the early stages of development, is influenced by a complex of environmental factors, among which temperature is one of the most important. Although the physiological effects of environmental stress in fish have been extensively studied, the molecular mechanisms are poorly understood. However, recent advances in transcriptomic techniques have facilitated the study of the molecular mechanisms of environmental stress responses in aquatic species. Here, we aimed to elucidate the effects of breeding temperatures (21, 24, 27, and 30 °C) on the growth and nutrient metabolism in the early developmental stage of Platax teira, using transcriptomic techniques. Transcriptomic analysis identified 5492, 6937, and 4246 differentially expressed genes (DEGs) in the 21 vs. 24 °C, 27 vs. 24 °C, and 30 vs. 24 °C comparisons, respectively, most of which were involved in cell processes, single organism, metabolism, catalytic activity, and cell part, based on gene ontology (GO) functional annotations. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in pathways related to metabolism of matter and energy, protein digestion and absorption, and glucose and lipid metabolism. Additionally, the expression of genes related to energy, lipid, and glucose metabolism in the fish liver was upregulated under a low-temperature condition (21 °C), although increasing the temperature within the acceptable threshold improved nutrient metabolism and growth in the fish. Meanwhile, nutrient metabolism and growth were suppressed by an extremely high temperature (30 °C) owing to oxidative stress. Overall, it was shown that nutrient metabolism pathways were involved in thermal stress responses in P. teira, and the optimal breeding temperature range was 24–27 °C. Through transcriptomics, the regulatory mechanism of larval development in P. teira under different growth temperatures was elucidated, with the goal of establishing a theoretical basis for industrial breeding.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...