GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Zhang, Jiayin  (2)
  • 2015-2019  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 2015-2019  (2)
Year
  • 1
    In: Metals, MDPI AG, Vol. 9, No. 12 ( 2019-11-30), p. 1291-
    Abstract: Hot compressive behaviors of X12 alloy steel were investigated using a Gleeble-1500D thermal mechanical simulator in a temperature range from 1050 to 1250 °C and with a range of strain rates from 0.05 to 5 s−1 and a maximum true strain of 0.7. Stress–strain curves were obtained under various deformation conditions. A modified Laasraoui–Jonas (L-J) dislocation density model of X12 alloy steel was established for the given ranges of strain rate and temperature. On the basis of this dislocation density model, a cellular automaton (CA) model was constructed and used to simulate microstructure evolution during the hot compression process. Microstructure and grain size of X12 were predicted for different deformation conditions. The simulated grain size was compared with the actual grain size measured with metallographic photos. An average relative error of grain size was determined to be 6%, indicating that the modified L-J dislocation density model can accurately predict dynamic recrystallization behaviors of X12 alloy steel in hot forging processes.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662252-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Agronomy, MDPI AG, Vol. 9, No. 12 ( 2019-11-28), p. 813-
    Abstract: This study was conducted to examine plant biomass and phosphorus (P) accumulation and partitioning in response P availability and to determine the optimal P concentration during growth phases of two plant species with contrasting growth characteristics: geranium (Pelargonium × hortorum Bailey) “Bullseye Scarlet”, a flowering plant, and coleus (Solenostemon scutellarioides (L.) Codd) “Chocolate Mint”, a foliage plant. Plants were grown in inert media (1:1 mixture of perlite and vermiculite) with complete nutrient solutions containing a range of P concentrations considered low (3 and 5 mg/L), intermediate (10 and 15 mg/L), and high (20 and 30 mg/L). Higher P rates logarithmically increased shoot and root dry mass of geranium and coleus plants regardless of the growth phase, but linearly enhanced flower dry mass of reproductive geranium plants resulting from the accelerated flower development. During the vegetative phase, the intermediate-P increased the shoot biomass production of geranium plants, but high-P was more effective for coleus plants. During the reproductive phase, however, the intermediate-P increased shoot biomass production of both geranium and coleus plants to the level achieved by high-P. The change from vegetative to reproductive phase increased the relative biomass to flowers, roots, and shoots of reproductive geranium plants and roots and shoots of reproductive coleus plants in decreasing orders, resulting in an increased root-to-shoot ratio. The P content of all plant parts showed a logarithmical increase with higher P rates for reproductive geranium plants but a linear increase for reproductive coleus plants. During the reproductive phase, a higher proportion of acquired P was allocated to flowers of low-P geranium plants than the roots of high-P coleus. Our results demonstrate that geranium plants require intermediate-P throughout the growth phases, while coleus plants require high-P during the vegetative phase and intermediate-P during the reproductive phase. P-use efficiency (PUE) ranged from 5 to 15% in high-P, which was improved with intermediate-P by 36 to 70%. To further improve PUE, the application method also needs to be taken into consideration such that the fertigation volume is reduced during the vegetative phase and increased before the reproductive phase.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...