GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • World Scientific Pub Co Pte Ltd  (1)
  • Zhang, Jianyu  (1)
Material
Publisher
  • World Scientific Pub Co Pte Ltd  (1)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    World Scientific Pub Co Pte Ltd ; 2016
    In:  Functional Materials Letters Vol. 09, No. 02 ( 2016-04), p. 1650024-
    In: Functional Materials Letters, World Scientific Pub Co Pte Ltd, Vol. 09, No. 02 ( 2016-04), p. 1650024-
    Abstract: A strain sensor based on the composites of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) filled by multi-walled carbon nanotube (MWNT) was prepared using a proposed fabrication process. Three kinds of MWNT loadings, i.e., 1.0[Formula: see text]wt.%, 2.0[Formula: see text] wt.% and 3.0[Formula: see text]wt.% were employed. Due to good dispersion state of MWNT in PVDF-HFP matrix, which was characterized by scanning electron microscope (SEM), this sensor was found to be of high sensitivity and stable performance. The sensor’s piezoresistivity varied in a weak nonlinear pattern, which was probably caused by the tunneling effect among neighboring MWNTs. The gauge factor of the sensor of 1.0[Formula: see text] wt.% MWNT loading was identified to be the highest, i.e., 33. This sensor gauge factor decreased gradually with the increase of addition amount of MWNT, which was 5 for the sensor of 3.0[Formula: see text]wt.% MWNT loading. This gauge factor was still higher than that of conventional metal-foil strain sensors. The electrical conductivity of PVDF-HFP/MWNT composites was also studied. It was found that with the increase of the addition amount of MWNT, the electrical conductivity of the PVDF-HFP/MWNT composites varied in a perfect percolation pattern with a very low percolation threshold, i.e., 0.77 vol.%, further indicating the very good dispersion of MWNT in the PVDF-HFP matrix.
    Type of Medium: Online Resource
    ISSN: 1793-6047 , 1793-7213
    Language: English
    Publisher: World Scientific Pub Co Pte Ltd
    Publication Date: 2016
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...