GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 7433-7434
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 50-51
    Abstract: T cells expressing chimeric antigen receptors (CAR) that target B-cell maturation antigen (BCMA) recognize and eliminate multiple myeloma (MM). BCMA is expressed by nearly all cases of MM. BCMA has a restricted expression pattern on normal cells. To reduce the risk of recipient immune responses against CAR T cells, we used a novel, fully-human, heavy-chain-only anti-BCMA binding domain designated FHVH33 instead of a traditional single-chain variable fragment (scFv). The FHVH33 binding domain lacks the light chain, artificial linker sequence, and 2 associated junctions of a scFv. We constructed a CAR designated FHVH33-CD8BBZ. FHVH33-CD8BBZ was encoded by a γ-retroviral vector and incorporated FHVH33, CD8α hinge and transmembrane domains, a 4-1BB costimulatory domain, and a CD3ζ domain. T cells expressing FHVH33-CD8BBZ are designated FHVH-BCMA-T. On this clinical trial, patients received 300 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine on days -5 to -3 followed by infusion of FHVH-BCMA-T on day 0. Twenty-one FHVH-BCMA-T infusions have been administered on 5 dose levels (DL), 0.75x106, 1.5x106, 3x106, 6x106 and 12 x106 CAR+ T cells/kg of bodyweight. DL4 (6 x 106 CAR+ T cells/kg) was identified as the maximum feasible dose (MFD) after weighing toxicity, efficacy and manufacturing factors. Patients are now being enrolled on an expansion phase to test the MFD. One patient (Patient 11) received 2 treatments. Four patients have been enrolled who were not ultimately treated. The median age of the patients enrolled is 64 (range 41-72). Patients received a median of 6 prior lines of therapy (range 3-12). Of the 20 FHVH-BCMA-T treatments evaluable for response, 18 (90%) resulted in objective responses (OR). Twelve treatments resulted in VGPR, complete remission (CR) or stringent complete remission (sCR). Ten patients (50%) have ongoing responses that range between 0-80 weeks (6 sCR/CRs, 3 VGPRs, 1 PR). At the highest two DLs (8 patients), 7 patients (88%) have ongoing responses (median duration 20 weeks, range 0+ to 35+ weeks); progressive MM occurred in only 1 patient who had evidence of spinal cord compression on day +5 due to a rapidly expanding plasmacytoma, which required early intervention with high-dose corticosteroid and radiation therapy. Of the 8 patients evaluated for response who had high-risk cytogenetics at baseline, 7 had ORs. Responses are ongoing in 2 patients with TP53 mutations and 1 patient with t(4;14) translocation. Ten treated patients came off study due to progressive MM (9 patients) or death from other causes (1 patient, influenza). Two of 4 patients who had plasmacytomas evaluated for BCMA expression at relapse had evidence of BCMA-negative MM. Four patients had bone marrow aspirates evaluated for BCMA-expression before treatment and at the time of relapse; 3 of these patients had evidence of loss of BCMA expression at relapse. Of 21 FHVH-BCMA-T treatments administered, 20 (95%) were followed by cytokine release syndrome (CRS) with 16 (76%) cases of grade 1 or 2 CRS, 4 cases (19%) of grade 3 CRS, and no cases of grade 4 CRS. Three patients received tocilizumab. The median peak C-reactive protein after all 21 treatments was 196.9 mg/L. Of 21 total treatments, 8 (38%) were followed by neurologic toxicity; there were 5 cases of grade 1-2 neurologic toxicity (headache, dysarthria, confusion, delirium), 2 cases of grade 3 neurologic toxicity (confusion), and 1 patient with grade 4 spinal cord compression due to progressive MM. Two patients received corticosteroids to manage neurologic toxicities. A median of 3.0% (range 0-95%) of bone marrow T cells were CAR+ when assessed by flow cytometry 14 days after FHVH-BCMA-T infusion. We assessed blood CAR+ cells by quantitative PCR. The median peak level of CAR+ cells was 121 cells/µl (range 3-359 cells/µl) and the median day post-infusion of peak blood CAR+ cell levels was 12 (range 7-14). The results from this phase 1 trial demonstrate that FHVH-BCMA-T cells can induce deep and durable responses of relapsed MM with manageable toxicities. Assessment of durability of responses at the maximum feasible dose is a critical future plan. Accrual to the expansion cohort continues. Table Disclosures Manasanch: Novartis: Research Funding; Adaptive Biotechnologies: Honoraria; GSK: Honoraria; JW Pharma: Research Funding; Merck: Research Funding; Quest Diagnostics: Research Funding; Takeda: Honoraria; Sanofi: Honoraria; BMS: Honoraria; Sanofi: Research Funding. Rosenberg:Kite, A Gilead Company: Consultancy, Patents & Royalties, Research Funding. Kochenderfer:Kite, a Gilead company: Patents & Royalties, Research Funding; Celgene: Patents & Royalties, Research Funding; bluebird, bio: Patents & Royalties. OffLabel Disclosure: cyclophosphamide 300 mg/m2 fludarabine 30 mg/m2 Conditioning chemotherapy prior to CAR T-cell infusion
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 3837-3837
    Abstract: Multiple myeloma (MM) is a malignancy of plasma cells that is nearly always incurable. T cells expressing chimeric antigen receptors (CAR) that target B-cell maturation antigen (BCMA) can recognize and eliminate MM. The murine or other non-human sequences in the single-chain variable fragments (scFv) of many anti-BCMA CARs can elicit recipient immune responses against CAR T cells. We constructed a CAR incorporating an anti-BCMA fully-human heavy-chain variable domain designated FHVH33. FHVH33 lacks the light chain, the artificial linker sequence, and the 2 linker-associated junctions of a scFv, so FHVH33 is smaller than a scFv and is likely to be less immunogenic. The FHVH33-containing CAR utilized in this clinical trial also incorporated a CD8a hinge and transmembrane domain, a 4-1BB domain, and a CD3z domain. The CAR was designated FHVH33-CD8BBZ and was encoded by a gamma-retroviral vector. T cells expressing FHVH33-CD8BBZ were designated FHVH33-T. The FHVH33-T production process was initiated with unsorted peripheral blood mononuclear cells and took 7 days. The treatment protocol was 300 mg/m 2 of cyclophosphamide and 30 mg/m 2 of fludarabine on days -5 to -3 followed by infusion of FHVH33-T on day 0. Twenty-five patients received FHVH33-T infusions. Median age of the treated patients was 62 (range 39-73). Patients received a median of 6 prior lines of therapy (range 3-10). Five dose levels were assessed (Table). Dose level 4, 6x10 6 CAR + T cells/kg was identified as the maximum feasible dose after considering efficacy and manufacturing factors. Twenty-three of 25 patients (92%) obtained objective responses (OR) of partial response (PR) or better. Seventeen patients (68%) attained a best response of stringent complete response (sCR) or very good partial response (VGPR). Thirteen patients have ongoing responses. To date, the median duration of response is 50 weeks for the highest two dose levels. At present, the overall median progression free survival (PFS) is 78 weeks; as responses are ongoing in 13 patients (52%), PFS will likely improve. Nine of 25 patients had extramedullary plasmacytomas at baseline; patients with extramedullary plasmacytomas at baseline were less likely to achieve sCR (P=0.011). All 25 treated patients were evaluable for toxicity. Eighteen patients had grade 1 or 2 cytokine-release syndrome (CRS), and 6 patients had grade 3 CRS. One patient had no CRS. No patients had grade 4 CRS. Five patients received tocilizumab and 4 patients received corticosteroids for CRS. Two of twenty-five patients had grade 3 neurological toxicity possibly attributable to FHVH33-T. No patient had grade 4 neurologic toxicity attributable to CAR T cells. One patient died of influenza pneumonia. We assessed blood CAR+ cells by quantitative PCR. The median peak blood CAR+ cell level was 126.5 cells/µl (range 3-1071 cells/µl), and the median time post-infusion of peak blood CAR + cell levels was 10.5 days (range 7-14). Peak CAR T-cell level was not associated with obtaining a sCR. In contrast, blood CAR+ T cell levels at both 1 and 2 months after infusion were statistically higher for patients obtaining sCR. For the 1-month time-point, blood CAR+ cell levels in cells/mL were 20 for sCR patients and 4 for not sCR patients (P=0.04). Pretreatment serum BCMA was not statistically different when patients obtaining or not obtaining sCR were compared (median serum BCMA in pg/mL: sCR patients 86,243; not sCR patients 261,675, P=0.20). We assessed cell-surface BCMA expression level on MM cells by antibody binding capacity (ABC) flow cytometry. Cell-surface BCMA expression level was not statistically different in sCR versus not sCR patients (median ABC in sites/cell: sCR patients 844; not sCR patients 535, P=0.29). Patients with MM expressing low levels of BCMA obtained durable responses of greater than 2 years duration, which suggests that FHVH33-T can recognize low levels of cell-surface BCMA. Eight patients had extramedullary plasmacytomas at relapse; 4 patients had plasmacytomas biopsied. Two of the biopsied plasmacytomas were BCMA+, and two were BCMA-negative by immunohistochemistry. FHVH33-CD8BBZ CAR T cells caused relatively mild toxicity and a high rate of sCRs in patients with relapsed MM including MM with low cell-surface BCMA expression. Figure 1 Figure 1. Disclosures Brudno: Kyverna Therapeutics: Membership on an entity's Board of Directors or advisory committees. Lam: Kite, a Gilead Company: Patents & Royalties. Kochenderfer: Kite, a Gilead Company: Patents & Royalties: on anti-CD19 CARs, Research Funding; Bristol Myers Squibb: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 16 ( 2017-06-01), p. 1803-1813
    Abstract: T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 (CAR-19) have potent activity against acute lymphoblastic leukemia, but fewer results supporting treatment of lymphoma with CAR-19 T cells have been published. Patients with lymphoma that is chemotherapy refractory or relapsed after autologous stem-cell transplantation have a grim prognosis, and new treatments for these patients are clearly needed. Chemotherapy administered before adoptive T-cell transfer has been shown to enhance the antimalignancy activity of adoptively transferred T cells. Patients and Methods We treated 22 patients with advanced-stage lymphoma in a clinical trial of CAR-19 T cells preceded by low-dose chemotherapy. Nineteen patients had diffuse large B-cell lymphoma, two patients had follicular lymphoma, and one patient had mantle cell lymphoma. Patients received a single dose of CAR-19 T cells 2 days after a low-dose chemotherapy conditioning regimen of cyclophosphamide plus fludarabine. Results The overall remission rate was 73% with 55% complete remissions and 18% partial remissions. Eleven of 12 complete remissions are ongoing. Fifty-five percent of patients had grade 3 or 4 neurologic toxicities that completely resolved. The low-dose chemotherapy conditioning regimen depleted blood lymphocytes and increased serum interleukin-15 (IL-15). Patients who achieved a remission had a median peak blood CAR + cell level of 98/μL and those who did not achieve a remission had a median peak blood CAR + cell level of 15/μL ( P = .027). High serum IL-15 levels were associated with high peak blood CAR + cell levels ( P = .001) and remissions of lymphoma ( P 〈 .001). Conclusion CAR-19 T cells preceded by low-dose chemotherapy induced remission of advanced-stage lymphoma, and high serum IL-15 levels were associated with the effectiveness of this treatment regimen. CAR-19 T cells will likely become an important treatment for patients with relapsed lymphoma.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 63, No. 8 ( 2022-07-03), p. 1849-1860
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2030637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3230-3230
    Abstract: Chimeric antigen receptor (CAR) T cells expressing B-cell maturation antigen (BCMA) can target and kill multiple myeloma (MM). BCMA was chosen as a target for MM because it is expressed by almost all cases of MM but has a restricted expression pattern on normal cells. CAR antigen-recognition domains made up of monoclonal antibody-derived, single-chain-variable fragments (scFv) are potentially immunogenic. To reduce the risk of recipient immune responses against CAR T cells, we used the sequence of a novel anti-BCMA, fully-human, heavy-chain-only binding domain designated FHVH33. The FHVH33 binding domain sequence was from TeneoBio, Inc. FHVH33 is smaller than a scFv. FHVH33 lacks the light chain, artificial linker sequence, and 2 associated junctions of a scFv, so it is predicted to be less immunogenic than a scFv, especially murine-derived scFvs. We constructed a CAR incorporating FHVH33, CD8α hinge and transmembrane domains, a 4-1BB costimulatory domain, and a CD3ζ T-cell activation domain. The CAR, FHVH33-CD8BBZ, is encoded by a γ-retroviral vector. FHVH33-CD8BBZ-expressing T cells (FHVH-BCMA-T) exhibited a full range of T-cell functions in vitro and eliminated tumors and disseminated malignancy in mice (Lam et al, Blood (ASH abstract) 2017 vol 130: 504). We are conducting the first clinical trial of FHVH-BCMA-T. Patients receive conditioning chemotherapy on days -5 to -3 with 300 mg/m2 of cyclophosphamide and 30 mg/m2 of fludarabine followed by infusion of FHVH-BCMA-T on day 0. This dose-escalation trial has 5 planned dose levels (DL). Twelve patients have received FHVH-BCMA-T on 3 DLs, 0.75x106, 1.5x106 and 3x106 CAR+ T cells/kg of bodyweight. Three patients were enrolled on the trial but not treated. The median age of patients enrolled was 63 (range 52-70); patients received a median of 6 lines of anti-myeloma therapy (range 3-10) prior to treatment with FHVH-BCMA-T. Ten patients out of 12 patients have achieved objective responses (OR). Five patients have obtained CRs or VGPRs to date. One patient achieved a partial remission (PR) 26 weeks after FHVH-BCMA-T infusion through a continued decrease in a measurable plasmacytoma. Five out of 7 patients who had myeloma with high-risk cytogenetics had an OR (Table). ORs occurred in patients with large soft-tissue plasmacytomas. Loss of BCMA expression on myeloma cells after treatment was documented in 2 patients. Two patients who developed progressive MM after CAR T-cell infusion had evidence of minimal residual disease in bone marrow 1-2 months post infusion of CAR T cells (patients 7,8). Eleven out of 12 patients had cytokine release syndrome (CRS); CRS grades ranged from 1-3 (Lee et al. Biol Blood Marrow Transplant 25 (2019) 625-638). The median peak C reactive protein (CRP) of the patients with CRS was 156.3 mg/L. Of 12 patients, 1 received the interleukin-6-receptor antagonist tocilizumab on day +6 to treat grade 3 CRS with hypotension requiring low-dose pressor therapy, grade 2 ejection fraction (EF) decrease and elevation of creatinine kinase (CK). All parameters returned to baseline by day +10. Patient 12 had a grade 3 decrease in EF which resolved by day +29. Two patients had grade 2 neurotoxicity that resolved without intervention: patient 3 had headaches, dysarthria and word-finding difficulties that resolved after 6 days while patient 6 had headaches on day +4. Patient 12 had grade 3 neurotoxicity with confusion on day +2; she was given dexamethasone with improvement in mental status the same day. After attaining a response, patient 6 died from influenza complications 6 weeks after FHVH-BCMA-T infusion. A median of 10.6% (range 1.1-46) of bone marrow T cells were CAR+ when assessed 14 days after FHVH-BCMA-T infusion. We assessed blood CAR+ cells by quantitative PCR. The median peak level of CAR+ cells was 76.5 cells/µl (range 3-347 cells/µl) and the median day post-infusion of peak blood CAR+ cell levels was 13 (range 9-14). The results from this phase 1 trial demonstrate that FHVH-BCMA-T cells can induce responses at low dose levels. Patients who had no CRS or low-grade CRS achieved objective responses. Toxicity was limited and reversible. Accrual to this trial continues. A maximum tolerated dose has not been determined yet. These results encourage further development of FHVH CAR-T. Table Disclosures Manasanch: Janssen: Honoraria; Sanofi: Honoraria; Takeda: Honoraria; Merck: Research Funding; Skyline Diagnostics: Research Funding; Sanofi: Research Funding; Quest Diagnostics: Research Funding; Celgene: Honoraria. Trinklein:Teneobio, Inc.: Employment, Equity Ownership. Buelow:Teneobio, Inc.: Employment, Equity Ownership. Kochenderfer:Kite and Celgene: Research Funding; Bluebird and CRISPR Therapeutics: Other: received royalties on licensing of his inventions. OffLabel Disclosure: Cyclophosphamide and fludarabine are used in combination for conditioning chemotherapy prior to CAR T-cell infusion
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 684-684
    Abstract: CD19 chimeric antigen receptor (CAR) T cells have shown significant promise in multiple early phase trials including our own (Lancet 385:517-28). We manufacture CAR T cells containing CD28 and CD3z domains in 7 days using a retroviral platform. Several challenges remain to its widespread use: 1) reduction in the incidence of grade 4 cytokine release syndrome (CRS) and 2) incorporation with standard salvage regimens. Here, we update our experience with 39 patients. In the first 21 patients we defined the maximally tolerated dose as 1x106 CAR T cells/kg, grade 4 CRS occurred in 16%, and noted that severity of CRS correlated with disease burden. We stratified the current cohort (n=18) by disease burden. Subjects 1-21 and subsequent patients with low burden disease (Arm 1: isolated CNS disease or 〈 25% marrow blasts) received a low dose preparative regimen of fludarabine (25 mg/m2/day Days-4 to -2) and cyclophosphamide (900 mg/m2 Day-2). Those with high burden disease (Arm 2: ³25% marrow blasts, circulating blasts or lymphomatous disease) received a high dose regimen to reduce tumor burden prior to cell infusion in an attempt to decrease severity of CRS. Arm 2 regimens were individualized based on prior therapies and risk from comorbidities. FLAG (n=6), ifosfamide/etoposide per AALL0031 (IE; n=2) and high dose fludarabine (30 mg/m2/day Days -6 to -3) with cyclophosphamide (1200 mg/m2/day Days -4 and -3) (HD flu/cy; n=3) were used. All products in the second cohort met cell dose though contaminating monocytes tended to inhibit maximal growth and transduction (see companion abstract by Stroncek). All patients received 1x106 CAR T cells/kg. Using grading criteria and an algorithm for early intervention to prevent grade 4 CRS (Blood 124:188-95) no grade 3 and only 1 grade 4 (5.6%) CRS occurred. Having significant comorbidities, Pt 34 was electively intubated for airway protection, did not require vasopressors, and rapidly recovered after tocilizumab and steroids. A brief seizure occurred, though he had a history of seizures. None others in the current cohort had neurotoxicity. Using intent to treat analysis, the complete response (CR) rate was 59% overall and 61% in ALL. 13/16 (81%) low burden and 10/22 (46%) high burden ALL patients had a CR across both cohorts. Low burden patients treated on either cohort had similar CR rate of 8/10 (80%) and 5/6 (83%). Although not statistically significant and underpowered, 7/11 (64%) high burden patients treated with low dose flu/cy had a CR while 3/11 (27%) had a CR with high dose regimens. Specifically, 3/6 (50%) receiving FLAG achieved MRD-CR while none receiving IE or HD flu/cy responded. 8/8 with primary refractory ALL had MRD-CR regardless of disease burden or preparative regimen raising the prospect that T cell fitness in these patients was superior to others. Of the 20 patients achieving an MRD-CR, the median leukemia free survival (LFS) is 17.7 months with 45.5% probability of LFS beginning at 18 months. Only 3 did not have a subsequent hematopoietic stem cell transplant as their referring oncologist determined the risk of such was unacceptable. Two relapsed with CD19-leukemia at 3 and 5 months, while 1 remains in CR with detectable CAR T cells at 5 months. Reliance on multiple infusions of cells is problematic as 0/5 CD19+ patients receiving a second dose responded. Preclinical models have demonstrated that T cell exhaustion has a role in limiting the efficacy of CAR T cells. We evaluated CAR products and the T cells used to generate them for phenotypic markers of exhaustion and will present data evaluating the relationship between these and response. Our results demonstrate that CD19 CAR T cell therapy is safe and effective with aggressive supportive care and use of an early intervention algorithm to prevent severe CRS and provides a potential for cure in primary refractory ALL. Table. Patient Characteristics, Response, and Toxicity Pt Age/ Sex/Risk # Relapses Arm/Prep Regimen(if Arm 2) Marrow Blasts Response CRS Grade Pre-Therapy Post CAR 22 17M 3 1 20 0 MRD- 2 23 13M 2 2 IE 99 98 SD 0 24 12M MLL 2 1 8.5 3 CR 1 25 25F 1 2 FLAG 95 0 MRD- 2 26 4M DS 2 2 IE (60%) 89 NA PD 0 27 8F 2 2 FLAG 77 69 SD 0 28 4M 2 2 FLAG (60%) 99 99 PD 0 29 12M PR 1 0.15 0 MRD- 1 30 15M Ph+ CNS2 3 1 0.08 0 MRD- 1 31 22M 3 2 FLAG 97 99 SD 0 32 15M CNS2 3 2 FLAG 0.04 + Lymphoma 0 MRD- 2 33 6M PR 1 0.15 0 MRD- 0 34 14M DS 3 2 Arm 1 Flu/Cy 90 0 MRD- 4 35 25M 2 2 HD Flu/Cy 30 87 PD 2 36 6M 2 1 1.5 91 PD 0 37 4F MLL 1 2 HD Flu/Cy 90 99 SD 0 38 7M 1 2 HD Flu/Cy 99 99 SD 1 Disclosures Off Label Use: Off-label use of tocilizumab will be discussed in managing cytokine release syndrome.. Rosenberg:Kite Pharma: Other: CRADA between Surgery Branch-NCI and Kite Pharma. Mackall:Juno: Patents & Royalties: CD22-CAR.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 218-218
    Abstract: Relapsed pre-B acute lymphoblastic leukemia (ALL) portends a poor prognosis even with hematopoietic stem cell transplantation (HSCT). CD19 chimeric antigen receptor (CAR) T cells have shown promise in early studies although morbidity related tohigh gradecytokine release syndrome (CRS) and/or neurotoxicity could limit its wide applicability in patients with high disease burden. The lympho depleting chemotherapy regimen may affect both toxicity and response and has not been well studied. Relapse rates among complete responders to CD19 CAR therapy occur in nearly half of patients in the first year. We report outcomes from our completed clinical trial of 53 children and young adults with relapsed/refractory ALL (n=51) or lymphoma (n=2) with a median follow up (mF/U) of 18.7 months. The first 21 patients received a low dose fludarabine (25 mg/m2/day Days -4 to -2) and cyclophosphamide (900 mg/m2 Day -2) preparative regimen (LDflu/cy) and results are reported in Lancet 385:517-28. The regimen for the subsequent 32 patients, who all received 1x106 CAR+ T cells/kg, was stratified based on disease burden. Subjects with low burden ALL (lowALL; 〈 25% marrow blasts) received LDflu/cy while those with high burden disease (highALL; 〉 25% marrow blasts or lymphomatous disease) received an alternative regimen [FLAG (n=6), ifosfamide/etoposide per AALL0031 (n=2) or fludarabine (30mg/m2/day Days -6 to -3) and cyclophosphamide (1200 mg/m2/day Days -4 and -3) (HDflu/cy; n=8)] in an attempt to mitigate severe CRS risk and improve response. Four highALL subjects received LDflu/cy due to comorbidities including Trisomy 21. CRS was graded and anti-cytokine therapy was instituted as per Blood 124:188-95. Date for data cutoff was July 31, 2016. Of the 53 subjects 11 had primary refractory ALL, 5Ph+, 3 with Trisomy 21, 4 with CNS2 and 2 with CNS3 ALL including one with extensive leptomeningeal and parenchymal involvement. Cells were manufactured in 7-11 days and none underwent a test expansion. One patient was not infused due to rapidly progressive fungal pneumonia but was accounted for in all analyses. Of 51 ALL patients, 31 (60.8%) achieved a complete response (CR) with 28/31 (90%) of responders negative for minimal residual disease (MRD-). All 6 subjects with CNS ALL were rendered into CNS1 status with resolution of leptomeningeal enhancement, where appropriate, and CAR cells in CSF. The median leukemia free survival (mLFS) of MRD- CR responders is 18 months with a 49.5% probability of LFS beginning at 18 months (mF/U 22.6 months). Grade 3 (n=5) and 4 (n=2) CRS combined for a severe CRS incidence of 13.5%. Three grade 3 neurotoxicities(1 each: dysphasia, delirium, headache) and 2 seizures (one grade 1, one grade 2) occurred. There were no grade 4 neurotoxicities, even in the subject with extensive CNS disease. Subjects with low ALL had a significantly higher CR rate (18/21; 85.7%) than those with high ALL (13/32; 40.6%) (p=0.0011) and use of a flu/cy regimen correlated with higher response (29/44; 65.9% vs 2/8; 25%; p=0.0301). Overall survival in all subjects receiving a flu/cy regimen was 13.3 months with a 34.7% probability of survival beginning at 38 months (mF/U 18.7 months), which is significantly longer than those who did not receive a flu/cy regimen (5.5 months, no survivors beyond 11 months). The hazard ratio (HR) of not receiving a flu/cy regimen was 6.35 (1.906-21.14; p=0.0026). mLFS of subjects with MRD- CR who received a flu/cy regimen was not reached with a 53.3% probability of LFS beginning at 18 months (mF/U 22.6 months). Of the 28 subjects achieving MRD- CR, 21 had a subsequent HSCT with a median time to HSCT of 54 days from CAR infusion. 8/28 (28.6%) relapsed with CD19+ (n=2), CD19-/dim (n=5), CD19 unknown (n=1) blasts. Relapse was significantly more common in subjects who did not have a HSCT after CAR therapy (6/7; 85.7%) compared to those who did (2/21; 9.5%) (p=0.0001). Even accounting for transplant related mortality, them LFS in the HSCT group was not reached with a 62% probability of LFS beginning at 18 months. This is significantly longer than them LFS of 4.9 months in MRD- CR subjects who did not proceed to HSCT (p=0.0006) with a HR of 16.9 (3.37-85.1) of not having a subsequent HSCT. In all, CD19 CAR T cell therapy was effective and safe with a low incidence of severe CRS and neurotoxicity. In this nonrandomized series, the rate of durable remission was higher when a flu/cy preparative regimen was used and consolidation HSCT was employed. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Lee: Juno: Honoraria. Kochenderfer:bluebird bio: Patents & Royalties, Research Funding; Kite Pharma: Patents & Royalties, Research Funding. Rosenberg:Kite pharma: Research Funding. Mackall:NCI: Patents & Royalties: B7H3 CAR.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cytometry Part B: Clinical Cytometry, Wiley, Vol. 104, No. 4 ( 2023-07), p. 294-303
    Abstract: Multiparametric flow cytometry (MFC) has become a powerful tool in minimal residual disease (MRD) detection in B‐lymphoblastic leukemia/lymphoma (B‐ALL). In the setting of targeted immunotherapy, B‐ALL MRD detection often relies on alterative gating strategies, such as the utilization of CD22 and CD24. It is important to depict the full diversity of normal cell populations included in the alternative B‐cell gating methods to avoid false‐positive results. We describe two CD22‐positive non‐neoplastic cell populations in the peripheral blood (PB), including one progenitor population of uncertain lineage and one mature B‐cell population, which are immunophenotypic mimics of B‐ALL. Methods Using MFC, we investigated the prevalence and phenotypic profiles of both CD22‐positive populations in 278 blood samples from 52 patients with B‐ALL; these were obtained pre‐ and post‐treatment with CD19 and/or CD22 CAR‐T therapies. We further assessed whether these two populations in the blood were exclusively associated with B‐ALL or recent anticancer therapies, by performing the same analysis on patients diagnosed with other hematological malignancies but in long‐term MRD remission. Results The progenitor population and mature B‐cell population were detected at low levels in PB of 61.5% and 44.2% of B‐ALL patients, respectively. Both cell types showed distinctive and highly consistent antigen expression patterns that are reliably distinguishable from B‐ALL. Furthermore, their presence is not restricted solely to B‐ALL or recent therapy. Conclusions Our findings aid in building a complete immunophenotypic profile of normal cell populations in PB, thereby preventing misdiagnosis of B‐ALL MRD and inappropriate management.
    Type of Medium: Online Resource
    ISSN: 1552-4949 , 1552-4957
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2180651-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...