GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Yu, Sizhu  (4)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 2020
    In:  ACS Omega Vol. 5, No. 36 ( 2020-09-15), p. 23268-23275
    In: ACS Omega, American Chemical Society (ACS), Vol. 5, No. 36 ( 2020-09-15), p. 23268-23275
    Type of Medium: Online Resource
    ISSN: 2470-1343 , 2470-1343
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2020
    detail.hit.zdb_id: 2861993-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Polymers Vol. 12, No. 8 ( 2020-08-03), p. 1732-
    In: Polymers, MDPI AG, Vol. 12, No. 8 ( 2020-08-03), p. 1732-
    Abstract: In order to synthesize a new kind of buoyancy material with high-strength, low-density and low-water-absorption and to study the curing reaction of tetraglycidylamine epoxy resin with an aromatic amine curing agent, the non-isothermal differential scanning calorimeter (DSC) method is used to calculate the curing kinetics parameters of N,N,N′,N′-tetraepoxypropyl-4,4′-diaminodiphenylmethane epoxy resin (AG-80) and the m-xylylenediamine (m-XDA) curing process. Further, buoyancy materials with different volume fractions of hollow glass microsphere (HGM) compounded with a AG-80 epoxy resin matrix were prepared and characterized. The curing kinetics calculation results show that, for the curing reaction of the AG-80/m-XDA system, the apparent activation energy increases with the conversion rates increasing and the reaction model is the Jander equation (three-dimensional diffusion, 3D, n = 1/2). The experimental results show that the density, compressive strength, saturated water absorption and water absorption rate of the composite with 55 v % HGM are 0.668 g·cm−3, 107.07 MPa, 0.17% and 0.025 h−1/2, respectively. This kind of composite can probably be used as a deep-sea buoyancy material.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymers, MDPI AG, Vol. 11, No. 7 ( 2019-07-03), p. 1137-
    Abstract: Buoyancy material is a type of low-density and high-strength composite material which can provide sufficient buoyancy with deep submersibles. A new buoyancy material with N,N,N′,N′-tetraepoxypropyl-4,4′-diaminodiphenylmethane epoxy resin (AG-80) and m-xylylenediamine (m-XDA) curing agent as matrix and hollow glass microsphere (HGM) as the filler is prepared. The temperature and time of the curing process were determined by the calculations of thermal analysis kinetics (TAK) through differential scanning calorimetry (DSC) analysis. The results show that the better mass ratio of AG-80 with m-XDA is 100/26. Combined TAK calculations and experimental results lead to the following curing process: pre-curing at 75 °C for 2 h, curing at 90 °C for 2 h, and post-curing at 100 °C for 2 h. The bulk density, compressive strength, and saturated water absorption of AG-80 epoxy resin-based buoyancy material were 0.729 g/cm3, 108.78 MPa, and 1.23%, respectively. Moreover, this type of buoyancy material can resist the temperature of 250 °C.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Polymers Vol. 12, No. 11 ( 2020-11-18), p. 2737-
    In: Polymers, MDPI AG, Vol. 12, No. 11 ( 2020-11-18), p. 2737-
    Abstract: This study aimed to prepare a new lightweight ultra-high-voltage insulator core filler composite, which can solve the problem of bulkiness. In this study, rigid polyurethane foam pellets with different densities are used as lightweight fillers and polyurethane resins to compound lightweight composite materials. On accounting for working conditions, the density, insulation, heat resistance, water absorption and mechanical properties are tested. The compressive properties of composites are determined by a foam skeleton and a process. Among three kinds of composites, in which the composites with the best comprehensive performance are materials filled with pellets to a density of 0.15g·cm−3. The density, surface resistance, volume resistance, leakage current, initial decomposition temperature, water absorption, force, rupture displacement and limiting oxygen index (LOI) of composites are 0.665 g·cm−3, 1.17 × 1014 Ω, 9.68 × 1014 Ω·cm, 0.079 mA, 208 °C, 0.047%, 2262 N, 2.54 mm, and 23.3%, respectively. The ultra-high-voltage insulator core filler in this study can reduce the weight of the solid core insulator crossarm for Ultra-High Voltage (UHV) by 50–75%.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...