GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (20)
  • Yu, Qiang  (20)
Material
Publisher
  • MDPI AG  (20)
Language
Years
  • 1
    In: Foods, MDPI AG, Vol. 11, No. 19 ( 2022-09-23), p. 2976-
    Abstract: Lushan Yunwu Tea is one of a unique Chinese tea series, and total polyphenols (TP), free amino acids (FAA), and polyphenols-to-amino acids ratio models (TP/FAA) represent its most important taste-related indicators. In this work, a feasibility study was proposed to simultaneously predict the authenticity identification and taste-related indicators of Lushan Yunwu tea, using near-infrared spectroscopy combined with multivariate analysis. Different waveband selections and spectral pre-processing methods were compared during the discriminant analysis (DA) and partial least squares (PLS) model-building process. The DA model achieved optimal performance in distinguishing Lushan Yunwu tea from other non-Lushan Yunwu teas, with a correct classification rate of up to 100%. The synergy interval partial least squares (siPLS) and backward interval partial least squares (biPLS) algorithms showed considerable advantages in improving the prediction performance of TP, FAA, and TP/FAA. The siPLS algorithms achieved the best prediction results for TP (RP = 0.9407, RPD = 3.00), FAA (RP = 0.9110, RPD = 2.21) and TP/FAA (RP = 0.9377, RPD = 2.90). These results indicated that NIR spectroscopy was a useful and low-cost tool by which to offer definitive quantitative and qualitative analysis for Lushan Yunwu tea.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Sustainability, MDPI AG, Vol. 11, No. 19 ( 2019-09-24), p. 5226-
    Abstract: Grazing affects nutrient cycling processes in grasslands, but little is known by researchers about effects on the nutrient stoichiometry of plant–soil–microbe systems. In this study, the influence of grazing intensity (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha−1) on carbon (C), nitrogen (N) and phosphorus (P) and their stoichiometric ratios in plants, soil, and microbes was investigated in a Hulunber meadow steppe, Northeastern China. The C:N and C:P ratios of shoots decreased with grazing increased. Leaf N:P ratios 〈 10 suggested that the plant communities under grazing were N-limited. Heavy grazing intensities increased the C:N and C:P ratios of microbial biomass, but grazing intensity had no significant effects on the stoichiometry of soil nutrients. The coupling relationship of C:N ratio in plant–soil–microbial systems was tightly significant compared to C:P ratio and N:P ratio according to the correlation results. The finding suggested grazing exacerbated the competition between plants and microorganisms for N and P nutrition by the stoichiometric changes (%) in each grazing level relative to the no grazing treatment. Therefore, for the sustainability of grasslands in Inner Mongolia, N inputs need to be increased and high grazing intensities reduced in meadow steppe ecosystems, and the grazing load should be controlled within G0.46.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Energies, MDPI AG, Vol. 10, No. 7 ( 2017-07-01), p. 892-
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2437446-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Foods, MDPI AG, Vol. 11, No. 2 ( 2022-01-17), p. 240-
    Abstract: This study was designed to explore the beneficial effect and mechanism of Ganoderma atrum (G. atrum) polysaccharide (PSG-1) on acrolein-induced IEC-6 cells. Our results indicated that PSG-1 significantly reduced the impairment of acrolein on cell viability, decreased oxidative stress, and enabled normal expression of tight junction (TJ) proteins that were inhibited by acrolein in IEC-6 cells. Furthermore, PSG-1 attenuated the elevation of microtubule-associated proteins light chain 3 (LC3) and Beclin 1-like protein 1 (Beclin 1) and increased the protein levels of phospho-mTOR (p-mTOR) and phospho-akt (p-akt), indicating that PSG-1 activated the mammalian target of rapamycin (mTOR) signaling pathway and alleviated acrolein-induced autophagy in IEC-6 cells. Moreover, PSG-1 markedly attenuated the acrolein-induced apoptosis, as evidenced by the increase in mitochondrial membrane potential (MMP) and B-cell lymphoma 2 (Bcl-2) expression, and the decrease in cysteine aspartate lyase (caspase)-3 and caspase-9. In addition, autophagy the inhibitor inhibited acrolein-induced TJ and apoptosis of IEC-6 cells, while the apoptosis inhibitor also inhibited acrolein-induced TJ and autophagy, suggesting that autophagy and apoptosis were mutually regulated. Taken together, the present study proved that PSG-1 could protect IEC-6 cells from acrolein-induced oxidative stress and could repair TJ by inhibiting apoptosis and autophagic flux, where autophagy and apoptosis were mutually regulated.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Foods Vol. 11, No. 6 ( 2022-03-10), p. 800-
    In: Foods, MDPI AG, Vol. 11, No. 6 ( 2022-03-10), p. 800-
    Abstract: This study aimed to characterize the structure of Chinese yam (Dioscoreae Rhizoma) polysaccharide (CYP) and to investigate its protective effect against H2O2-induced oxidative damage in IEC-6 cells. The chemical composition and structural characteristics of the samples were analyzed by chemical and instrumental methods, including high-performance gel permeation chromatography, high-performance anion-exchange chromatography (HPAEC), Fourier transformed infrared (FT-IR), ultraviolet (UV), and scanning electron microscopy (SEM). Antioxidant activity was evaluated by establishing a cellular model of oxidative damage. The molecular weight of CYP was 20.89 kDa. Analysis of the monosaccharide composition revealed that CYP was primarily comprised of galactose (Gal), glucose (Glu), and galacturonic acid (GalA), and the ratio between them was 28.57:11.28:37.59. Pretreatment with CYP was able to improve cell viability, superoxide dismutase (SOD) activity, and reduce intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content after H2O2 injury. CYP also attenuated oxidative damage in cells through the mitogen-activated protein kinase (MAPK) signaling pathway. This study showed that CYP was an acidic heteropolysaccharide with a good protective effect against oxidative damage, and it thus has good prospects in food and biopharmaceutical industries.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Foods, MDPI AG, Vol. 9, No. 1 ( 2019-12-23), p. 14-
    Abstract: Mung bean is nutritious and rich in protein (19.5%–33.1%). However, there are few studies on mung bean protein active peptides so the mung bean protein hydrolysates (MBPHs) were investigated for evaluating their ability to clear intracellular reactive oxygen species (ROS) and regulating the ability of antioxidant enzymes on NCTC-1469 cells. Results showed that MBPHs, MBPHs-I (molecular weight 〈 3 kDa), MBPHs-II (molecular weight between 3 and 10 kDa), and MBPHs-III (molecular weight 〉 10 kDa) could all improve the survival rate of cells compared with the model group. MBPHs, MBPHs-I, and MBPHs-II could significantly decrease the content of lactate dehydrogenase (LDH) and reduce the generation of malonaldehyde (MDA) at a concentration of 0.4 mg/mL. Regarding the intracellular ROS, the result showed that MBPHs-I significantly reduced the production of ROS (from 58.3% to 26.6%) and had a dose-dependent relationship. In addition, the amino acid analysis showed that MBPHs-I had a balanced amino acid composition. MBPHs-I is rich in lysine but was deficient in cereals. Therefore, the hydrophobic and aromatic amino acids in MBPHs-I were high, which could improve its antioxidant activity. According to the results, MBPHs-I was the best and most potent natural antioxidant and it can contribute to drug development and medical application.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Foods, MDPI AG, Vol. 11, No. 20 ( 2022-10-14), p. 3203-
    Abstract: Neurodegenerative diseases are characterized by a massive loss of specific neurons, which can be fatal. Acrolein, an omnipresent environmental pollutant, is classified as a priority control contaminant by the EPA. Evidence suggests that acrolein is a highly active unsaturated aldehyde related to many nervous system diseases. Therefore, numerous studies have been conducted to identify the function of acrolein in neurodegenerative diseases, such as ischemic stroke, AD, PD, and MS, and its exact regulatory mechanism. Acrolein is involved in neurodegenerative diseases mainly by elevating oxidative stress, polyamine metabolism, neuronal damage, and plasma ACR-PC levels, and decreasing urinary 3-HPMA and plasma GSH levels. At present, the protective mechanism of acrolein mainly focused on the use of antioxidant compounds. This review aimed to clarify the role of acrolein in the pathogenesis of four neurodegenerative diseases (ischemic stroke, AD, PD and MS), as well as protection strategies, and to propose future trends in the inhibition of acrolein toxicity through optimization of food thermal processing and exploration of natural products.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Foods, MDPI AG, Vol. 12, No. 8 ( 2023-04-20), p. 1724-
    Abstract: The aim of this work was to prepare soluble dietary fibers (SDFs) from insoluble dietary fiber of navel orange peel (NOP-IDF) by mixed solid-state fermentation (M-SDF) and to investigate the influence of fermentation modification on the structural and functional characteristics of SDF in comparison with untreated soluble dietary fiber (U-SDF) of NOP-IDF. Based on this, the contribution of two kinds of SDF to the texture and microstructure of jelly was further examined. The analysis of scanning electron microscopy indicated that M-SDF exhibited a loose structure. The analysis of scanning electron microscopy indicated that M-SDF exhibited a loose structure. In addition, M-SDF exhibited increased molecular weight and elevated thermal stability, and had significantly higher relative crystallinity than U-SDF. Fermentation modified the monosaccharide composition and ratio of SDF, as compared to U-SDF. The above results pointed out that the mixed solid-state fermentation contributed to alteration of the SDF structure. Furthermore, the water holding capacity and oil holding capacity of M-SDF were 5.68 ± 0.36 g/g and 5.04 ± 0.04 g/g, which were about six times and two times of U-SDF, respectively. Notably, the cholesterol adsorption capacity of M-SDF was highest at pH 7.0 (12.88 ± 0.15 g/g) and simultaneously exhibited better glucose adsorption capacity. In addition, jellies containing M-SDF exhibited a higher hardness of 751.15 than U-SDF, as well as better gumminess and chewiness. At the same time, the jelly added with M-SDF performed a homogeneous porous mesh structure, which contributed to keeping the texture of the jelly. In general, M-SDF displayed much excellent structural and functional properties, which could be utilized to develop functional food.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Water, MDPI AG, Vol. 10, No. 9 ( 2018-09-18), p. 1273-
    Abstract: The Gongshui River basin exhibits one of the most serious soil erosion areas in southern China, and has always been the key control area of national soil and water conservation programs. This study used daily precipitation, streamflow, and sediment concentration data collected from 1957 to 2015 from the main hydrological stations of the Gongshui River to investigate streamflow and sediment discharge variations and their responses to precipitation and human activities. The Mann-Kendall and Pettitt’s test were used for trend and change-point detection. The double mass curve (DMC) method was employed to quantify the effects of precipitation change and human activities on hydrological regime shifts. The results showed insignificant trends of both annual precipitation and streamflow for all stations, while the sediment discharge of most stations exhibited significant decreasing trends. Change-point analyses revealed that all hydrologic stations except Mazhou had transition years. The estimation via DMC indicated that after the change point years, there was a rapid reduction in sediment discharge at Hanlinqiao, Fengkeng, Julongtan, Xiashan, and Chawu stations, but not at Mazhou, Ruijin, and Yangxinjian stations. Human activity provided a significantly greater contribution to sediment discharge than precipitation. The evidence clearly indicates that the degree and extension of conservation or destruction measures and the construction of large- and medium-sized reservoirs were the major factors significantly decreasing or increasing annual sediment discharge of the Gongshui River. This work could serve as the basis for decision making regarding river basin water resources management to estimate the effects of anthropogenic impacts on water and sediment discharge variations during the last few decades, thereby guiding adaptation and protection of the water resources of the Gongshui River flowing into the Poyang Lake.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sustainability Vol. 14, No. 17 ( 2022-08-25), p. 10576-
    In: Sustainability, MDPI AG, Vol. 14, No. 17 ( 2022-08-25), p. 10576-
    Abstract: Forest biomass is a key index to comprehend the changes of ecosystem productivity and forest growth and development. Accurate acquisition of single tree scale biomass information is of great significance to the protection, management and monitoring of forest resources. LiDAR technology can penetrate the forest canopy and obtain information on the vertical structure of the forest. Aerial photography technology has the advantages of low cost and high speed, and can obtain information on the horizontal structure of the forest. Therefore, in this study, multispectral imagery and LiDAR data were integrated, and a part of the Zengcheng Forest Farm in Guangdong Province was selected as the study area. Large-scale and high-precision Eucalyptus biomass estimation research was gradually carried out by screening influencing factors and establishing models. This study compared and analysed the performance of multiple stepwise regression methods, random forest algorithms, support vector machine algorithms and decision tree algorithms for Eucalyptus biomass estimation to determine the best method for Eucalyptus biomass estimation. The results demonstrated that the accuracy of the model established by the machine learning method was higher than that of the linear regression model, and in the machine learning model, the random forest model had the best performance on both the training set (R2 = 0.9346, RMSE = 8.8399) and the test set (R2 = 0.8670, RMSE = 15.0377). RF was more suitable for the biomass estimation of Eucalyptus in this study. The spatial resolution of Eucalyptus biomass distribution was 0.05 m in this study, which had higher accuracy and was more accurate. It can provide data reference for the details about biomass distribution of Eucalyptus in the majority of provinces, and has certain practical reference significance.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...