GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (5)
  • Yu, Hongwei  (5)
Material
Publisher
  • Oxford University Press (OUP)  (5)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Journal of Public Health Vol. 45, No. 2 ( 2023-06-14), p. 321-329
    In: Journal of Public Health, Oxford University Press (OUP), Vol. 45, No. 2 ( 2023-06-14), p. 321-329
    Abstract: Although the association between Helicobacter pylori (H. pylori) infection and hepatic encephalopathy (HE) has been confirmed through some research, the results of these relevant studies still remain controversial. We conducted an updated meta-analysis based on published studies to address this issue. Methods A systematic search was conducted, reviewing all studies about the association between H. pylori infection and HE, through November 2021. The outcome measures were presented as odds ratios (ORs) with 95% confidence intervals (CIs). Results In total, 13 studies provided data from 2784 subjects. H. pylori infection increased the risk of HE by 32% (OR = 2.32, 95% CI: 1.78–3.04). The effect became greater after hepatic encephalopathy was divided into overt HE and minimal hepatic encephalopathy (MHE) (HE OR = 2.66, 95% CI: 2.01–3.51, MHE OR = 1.74, 95% CI: 1.10–2.76). After H. pylori eradication, the risk of HE was reduced by 64%. Conclusions H. pylori infection is significantly associated with HE, and the infection rate of H. pylori also increases with the severity of HE. Eradication of H. pylori has a protective effect on HE. Therefore, it is necessary to eradicate H. pylori in HE treatments.
    Type of Medium: Online Resource
    ISSN: 1741-3842 , 1741-3850
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1497445-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  FEMS Microbiology Letters Vol. 369, No. 1 ( 2022-03-04)
    In: FEMS Microbiology Letters, Oxford University Press (OUP), Vol. 369, No. 1 ( 2022-03-04)
    Abstract: As a native CoQ10 producer, Rhodobacter sphaeroides has been extensively engineered to enhance CoQ10 production. However, the genetic manipulations using plasmids suffer from risk of plasmid loss during propagation process, biomass impairment due to cellular burden and bio-safety concerns. In this paper, genomic manipulations via Tn7 transposition was conducted to boost the CoQ10 biosynthesis in R. sphaeroides. The titer production and content of CoQ10 were improved by 18.44% and 18.87%, respectively compared to the wild type, when an additional copy of dxs and dxr were integrated into the genome. Further overexpression of idi and ispD by genomic integration created strain RSPCDDII with CoQ10 production and content of 81.23 mg/L and 5.93 mg/g, which were 54.28 and 55.97% higher than those of the wild type. The gene segments were successfully inserted into the attTn7 site of the R. sphaeroides genome. Meanwhile, the biomass was not affected. Compared to overexpression of genes on plasmids, this strategy could enhance protein expression to a proper level without affecting cell growth, and in a more stable manner.
    Type of Medium: Online Resource
    ISSN: 1574-6968
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1501716-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Nucleic Acids Research Vol. 49, No. D1 ( 2021-01-08), p. D1556-D1556
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. D1 ( 2021-01-08), p. D1556-D1556
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Nucleic Acids Research Vol. 49, No. D1 ( 2021-01-08), p. D988-D997
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. D1 ( 2021-01-08), p. D988-D997
    Abstract: Mollusca represents the second largest animal phylum but remains poorly explored from a genomic perspective. While the recent increase in genomic resources holds great promise for a deep understanding of molluscan biology and evolution, access and utilization of these resources still pose a challenge. Here, we present the first comprehensive molluscan genomics database, MolluscDB (http://mgbase.qnlm.ac), which compiles and integrates current molluscan genomic/transcriptomic resources and provides convenient tools for multi-level integrative and comparative genomic analyses. MolluscDB enables a systematic view of genomic information from various aspects, such as genome assembly statistics, genome phylogenies, fossil records, gene information, expression profiles, gene families, transcription factors, transposable elements and mitogenome organization information. Moreover, MolluscDB offers valuable customized datasets or resources, such as gene coexpression networks across various developmental stages and adult tissues/organs, core gene repertoires inferred for major molluscan lineages, and macrosynteny analysis for chromosomal evolution. MolluscDB presents an integrative and comprehensive genomics platform that will allow the molluscan community to cope with ever-growing genomic resources and will expedite new scientific discoveries for understanding molluscan biology and evolution.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Genomics, Proteomics & Bioinformatics Vol. 20, No. 6 ( 2022-12-01), p. 1066-1077
    In: Genomics, Proteomics & Bioinformatics, Oxford University Press (OUP), Vol. 20, No. 6 ( 2022-12-01), p. 1066-1077
    Abstract: Genome miniaturization drives key evolutionary innovations of adaptive traits in vertebrates, such as the flight evolution of birds. However, whether similar evolutionary processes exist in invertebrates remains poorly understood. Derived from the second-largest animal phylum, scallops are a special group of bivalve molluscs and acquire the evolutionary novelty of the swimming lifestyle, providing excellent models for investigating the coordinated genome and lifestyle evolution. Here, we show for the first time that genome sizes of scallops exhibit a generally negative correlation with locomotion activity. To elucidate the co-evolution of genome size and swimming lifestyle, we focus on the Asian moon scallop (Amusium pleuronectes) that possesses the smallest known scallop genome while being among scallops with the highest swimming activity. Whole-genome sequencing of A. pleuronectes reveals highly conserved chromosomal macrosynteny and microsynteny, suggestive of a highly contracted but not degenerated genome. Genome reduction of A. pleuronectes is facilitated by significant inactivation of transposable elements, leading to reduced gene length, elevated expression of genes involved in energy-producing pathways, and decreased copy numbers and expression levels of biomineralization-related genes. Similar evolutionary changes of relevant pathways are also observed for bird genome reduction with flight evolution. The striking mimicry of genome miniaturization underlying the evolution of bird flight and scallop swimming unveils the potentially common, pivotal role of genome size fluctuation in the evolution of novel lifestyles in the animal kingdom.
    Type of Medium: Online Resource
    ISSN: 1672-0229 , 2210-3244
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2233708-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...