GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (2)
  • Yoshizato, Tetsuichi  (2)
  • 2010-2014  (2)
Material
Publisher
  • American Society of Hematology  (2)
Language
Years
  • 2010-2014  (2)
Year
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1282-1282
    Abstract: Abstract 1282 Emerging evidence is establishing a connection between MDS and spliceosome mutations. Spliceosome including SF3b1, U2AF1 and SRSF2 are frequently and exclusively mutated in myelodysplastic syndromes (MDS) and related myeloid neoplasms. Spliceosome mutations occur at varying frequencies in different disease subtypes. SF3B1 was shown to be highly associated with MDS characterized by increased ring sideroblasts and SRSF2 mutations are more prevalent in chronic myelomonocytic leukemia. In spite of the fact that the recent discovery constitutes a novel class of genomic lesions and defines an entirely new pathogenic pathway of leukaemogenesis, the pathogenesis of spliceosome mutation is not largely understood. To understanding the biological consequences of spliceosomal mutations, we previously reported mutant U2AF1 cause altered RNA splicing, and overexpressed mutant U2AF1 decrease in cell proliferarion. However, currently, no functional analysis of SRSF2 mutation has been published. SRSF2 belongs to the serine/arginine-rich (SR) protein family. SR proteins are a family of RNA binding proteins characterized by one or two RNA recognition motifs (RRMs) and a signature RS domain enriched with arginine and serine repeats (RS domain).Growing body of evidence suggests that SR protein may be directly involved in the process of carcinogenesis. Gene knockout experiment indicated SRSF2 is involved with specific pathways in regulating cell proliferation and genomic stability during mammalian organogenesis. In neck and head tumor, SRSF2 is frequently overexpressed. And upregulated SRSF2 increases missplicing and downregulates E-cadherin expression, which is an important tumor suppressor gene. Therefore SRSF2 potential function in tumorigenesis is suggested in epithelial cancers. SRSF2 mutations with MDS exclusively occur at P95 within an intervening sequence between RRM and RS domains, indicating a gain-of-function nature of these mutations. So, to clarify the biological role of SRSF2 mutations in leukemogenesis, we evaluated the oncogenic role of SRSF mutations by expressing a mutant SRSF2 allele in Jurkat cells. The cells transduced with a tumor-derived SRSF2 allele showed reduced cell proliferation and increased apoptosis compared to the mock and wild type SRSF2-transduced cells. Next we performed in vitro colony assay using a highly purified hematopoietic stem cell population (CD34-c-Kit+ScaI+ Lin-(CD34-KSL) cells) collected from C57BL/6 (B6)-Ly5.1 mouse that was retrovirally transduced with mock, mutant or wild-type SRSF2 construct. The mutant SRSF2-transduced cells showed reduced cell proliferation compared with mock- or wild-type SRSF2 transduced cells. Subsequently, we conducted bone marrow transplantaion assay. We collected CD34-KSL cells from B6-Ly5.1 mouse, and retrovirally transduce mock, mutant or wild-type SRSF2 construct, each harbouring the EGFP marker gene. And these cells were sorted by EGFP marker, and transplanted with competitor cells (B6-Ly5.1/5.2 F1 mice origin) into lethally irradiated B6-Ly5.2 mice. The wild-type SRSF2-transduced cells showed a lower reconstitution capacity than the mock-transduced cells. On the other hand, the recipients of the cells transduced with the mutant SRSF2 showed lower EGFP-positive cell chimaerism than those of the mock- or the wild-type SRSF2-transduced. Therefore, the mutant SRSF2 was indicated to have a negative effect on cellular proliferation capacity in vitro and in vivo, and a gain-of-function nature of these mutations is suggested. These results are similar to the effect of U2AF1 mutant, which we reported mutant U2AF1 transduced TF-1 and HeLa cells present with a decrease in cell proliferation and hematopoietic stem cells expressing mutant U2AF1 also displayed lower reconstitution capacity by competitive reconstitution assay in mice. So far, the mechanism responsible for the growth advantage of mutant cells in patient is unclear. We furthermore observe hematopoietic phenotype of the bone marrow transplanted model mouse. SRSF2 mutations can coexist with mutations in TET2, ASXL1 and RUNX1. Therefore we performed additionally bone marrow transplantation assay, utilizing hematopoietic cells derived from TET2 knockdown mice, as a model of multistep carcinogenesis. We will present the results of our biological assay on the SRSF2 mutations and discuss the pathogenesis of MDS. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 600-600
    Abstract: Frequent pathway mutation involving multiple components of the RNA splicing machinery is a cardinal feature of myeloid neoplasms showing myeloid dysplasia, in which the major mutational targets include U2AF35, ZRSR2, SRSF2 and SF3B1. Among these, SF3B1 mutations were strongly associated with MDS subtypes characterized by increased ring sideroblasts, such as refractory anemia and refractory cytopenia with multiple lineage dysplasia with ring sideroblasts, suggesting the critical role of SF3B1 mutations in these MDS subtypes. However, currently, the molecular mechanism of SF3B1mutation leading to the ring sideroblasts formation and MDS remains unknown. The SF3B1 is a core component of the U2-small nuclear ribonucleoprotein (U2 snRNP), which recognizes the 3′ splice site at intron–exon junctions. It was demonstrated that Sf3b1 null mice were shown to be embryonic lethal, while Sf3b1 +/- mice exhibited various skeletal alterations that could be attributed to deregulation of Hox gene expression due to haploinsufficiency of Sf3b1. However, no detailed analysis of the functional role of Sf3b1 in hematopoietic system in these mice has been performed. So, to clarify the role of SF3B1 in hematopoiesis, we investigated the hematological phenotype of Sf3b1 +/- mice. There was no significant difference in peripheral blood counts, peripheral blood lineage distribution, bone marrow total cellularity or bone marrow lineage composition between Sf3b1 +/+ and Sf3b1 +/- mice. Morphologic abnormalities of bone marrow and increased ring sideroblasts were not observed. However, quantitative analysis of bone marrow cells from Sf3b1 +/- mice revealed a reduction of the number of hematopoietic stem cells (CD34 neg/low, cKit positive, Sca-1 positive, lineage-marker negative: CD34-KSL cells) measured by flow cytometry analysis, compared to Sf3b1 +/+ mice. Whereas examination of hematopoietic progenitor cells revealed a small decrease in KSL cell populations and megakaryocyte - erythroid progenitors (MEP) in Sf3b1 +/- mice, and common myeloid progenitors (CMP), granulocyte - monocyte progenitors (GMP) and common lymphoid progenitors (CLP) remained unchanged between Sf3b1 +/+ and Sf3b1 +/- mice. In accordance with the reduced number of hematopoietic stem cells in Sf3b1 +/- mice, the total number of colony-forming unit generated from equal number of whole bone marrow cells showed lower colony number in Sf3b1 +/- mice in vitro. Competitive whole bone marrow transplantation assay, which irradiated recipient mice were transplanted with donor whole bone marrow cells from Sf3b1 +/+ or Sf3b1 +/- mice with an equal number of competitor bone marrow cells, revealed impaired competitive whole bone marrow reconstitution capacity of Sf3b1 +/- mice in vivo. These data demonstrated Sf3b1 was required for hematopoietic stem cells maintenance. To further examine the function of hematopoietic stem cells in Sf3b1 +/- mice, we performed competitive transplantation of purified hematopoietic stem cells from Sf3b1 +/+ or Sf3b1 +/- mice into lethally irradiated mice together with competitor bone marrow cells. Sf3b1 +/- progenitors showed reduced hematopoietic stem cells reconstitution capacity compared to those from Sf3b1 +/+ mice. In serial transplantation experiments, progenitors from Sf3b1 +/- mice showed reduced repopulation ability in the primary bone marrow transplantation, which was even more pronounced after the second bone marrow transplantation. Taken together, these data demonstrate that Sf3b1 plays an important role in normal hematopoiesis by maintaining hematopoietic stem cell pool size and regulating hematopoietic stem cell function. To determine the molecular mechanism underlying the observed defect in hematopoietic stem cells of Sf3b1 +/- mice, we performed RNA-seq analysis. We will present the results of our biological assay and discuss the relation of Sf3b1 and hematopoiesis. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...