GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Science of The Total Environment Vol. 755 ( 2021-02), p. 143017-
    In: Science of The Total Environment, Elsevier BV, Vol. 755 ( 2021-02), p. 143017-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Chemistry and Physics Vol. 17, No. 3 ( 2017-02-02), p. 1641-1651
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 3 ( 2017-02-02), p. 1641-1651
    Abstract: Abstract. Atmospheric pollution has become a serious environmental and social problem in China. Over the past 30 years, the number of winter (December–February) haze days over the North China Plain (WHDNCP) was greatest in 2014. In addition to anthropogenic influence, climate anomalies also played a role. Thus, it is necessary to analyze the anomalous atmosphere circulations associated with haze pollution of this year in detail. Near the surface, the weaker East Asian winter monsoon pattern, causing southerly winds over the North China Plain, could aggravate the situation of haze. In the lower and middle troposphere, taking the anticyclone circulation over North China as an intermediate system, the positive phases of the eastern Atlantic/western Russia (EA/WR), the western Pacific (WP), and the Eurasia (EU) patterns led to a worse air pollution dispersion condition that contributed to a larger number of WHDNCP. In 2014, these three patterns could be recognized from the wind anomalies in the lower troposphere. The preceding autumn (September–November) Arctic sea ice (ASI) anomalies over the eastern Hemisphere and the warmer winter surface over Eurasia might have induced or intensified the positive EA/WR pattern in 2014. These two external forcings, together with the pre-autumn sea surface temperature anomalies in the Pacific, might have also stimulated or enhanced the positive EU-like patterns. The anomalous surface temperature in autumn 2014 was efficient in intensifying anomalous circulations such as the positive phase of the WP pattern. The opposite case of minimum WHDNCP in 2010 further supports the mechanism of how EA/WR and WP patterns and associated external factors altered the local climate conditions to impact the WHDNCP.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2024
    In:  National Science Review Vol. 11, No. 7 ( 2024-06-13)
    In: National Science Review, Oxford University Press (OUP), Vol. 11, No. 7 ( 2024-06-13)
    Abstract: More than 1000 years, the Meiyu–Baiu have shaped the uniqueness of natural resources, civilization and culture in the Yangtze River Basin of China and the main islands of Japan. In recent decades, frequent rainstorms and droughts have seemingly diminished the misty features of traditional Meiyu–Baiu rainfall. However, there is still no consensus on whether their traditional nature is suspended. In this study, we quantitatively demonstrate that the Meiyu–Baiu almost completely lost their traditional features during 1961–2023, ∼80% of which can be attributed to anthropogenic warming. Furthermore, in a warmer future, the traditional Meiyu–Baiu will be more unlikely to appear. This study underscores the urgency in adapting to climate shift because destructive extremes are measurably taking the place of mild and maternal rains.
    Type of Medium: Online Resource
    ISSN: 2095-5138 , 2053-714X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2745465-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Chemistry and Physics Vol. 19, No. 1 ( 2019-01-08), p. 233-243
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 1 ( 2019-01-08), p. 233-243
    Abstract: Abstract. China has experienced a substantial increase in severe haze events over the past several decades, which is primarily attributed to the increased pollutant emissions caused by its rapid economic development. The climate changes observed under the warming scenarios, especially those induced by increases in greenhouse gases (GHGs), are also conducive to the increase in air pollution. However, how the air pollution changes in response to the GHG warming has not been thoroughly elucidated to date. We investigate this change using the century-long large ensemble simulations with the Community Earth System Model 1 (CESM1) with the fixed anthropogenic emissions at the year 2005. Our results show that although the aerosol emission is assumed to be a constant throughout the experiment, anthropogenic air pollution presents positive responses to the GHG-induced warming. The anthropogenic PM2.5 concentration is estimated to increase averaged over eastern China at the end of this century, but varying from regions, with an increase over northwestern part of eastern China and a decrease over southeastern part. Similar changes can be observed for the light air pollution days. However, the severe air pollution days are reported to increase across eastern China at the end of this century, particularly around the Jing–Jin–Ji region. Further research indicates that the increased stagnation days and the decreased light precipitation days are the possible causes of the increase in PM2.5 concentration, as well as the anthropogenic air pollution days. Estimation shows that the effect of climate change induced by the GHG warming can account for 11 %–28 % of the changes in anthropogenic air pollution days over eastern China. Therefore, in the future, more stringent regulations on regional air pollution emissions are needed to balance the effect from climate change.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Environmental Science and Ecotechnology, Elsevier BV, Vol. 16 ( 2023-10), p. 100280-
    Type of Medium: Online Resource
    ISSN: 2666-4984
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 3052478-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...