GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (4)
  • Yi, Rongqing  (4)
Material
Publisher
  • AIP Publishing  (4)
Language
Years
  • 1
    In: Physics of Plasmas, AIP Publishing, Vol. 30, No. 6 ( 2023-06-01)
    Abstract: Both direct and indirect drive concepts of inertial confinement fusion rely on targets with cryogenic thermonuclear fuel shells for ignition. Experiments on the Shenguang-III prototype laser facility using laser-driven gas-filled hohlraums show distinct differences between cryogenic (20 K) and warm hohlraums. Although the measured x-ray flux in the photon range from 1.6 to 4.4 keV (Au M-band) is identical between cryogenic and warm hohlraums, the cryogenic hohlraum has a much slower rate of rise and is 20% lower in peak intensity of x-ray flux in the photon range from 0.1 to 4 keV. The reasons for this drive deficit between cryogenic and warm hohlraums are investigated using a similar series of hohlraum experiments. The experiments employ three types of hohlraums to distinguish the effect of a shroud window membrane and condensates. Warm hohlraums with a shroud window membrane replicate the slower rate of rise of radiation flux of cryogenic targets. When the shroud window is present, the measured x-ray flux in the hohlraum shows a drive deficit that decreases with time. However, the measured deficit increases as the viewing angle increases. All of these results indicate that the portion of the shroud not illuminated by the lasers absorbs the outgoing x-ray flux from the hohlraum.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Physics of Plasmas, AIP Publishing, Vol. 28, No. 6 ( 2021-06-01)
    Abstract: Great efforts have been made to create a bright K-shell source using the thin metal cylindrical cavities in the past few decades. Several metal materials such as titanium (Ti), iron, and so on have been tested for high x-ray conversion efficiency mainly at the OMEGA and NIF laser facilities. Recently, x-ray sources in Ti K-shell transition energy range were investigated at the Shenguang-III prototype laser facility with ∼5 kJ laser energy. The experiments were aimed to reproduce the previous ones at OMEGA, but with an extraordinarily small volume of cylindrical cavity and detailed characterizations of the x-ray source. The cavities were 800 μm inner diameter, 800 μm length, and 30 μm thick plastic tubes supporting 1 μm thick Ti. Seven laser beams were focused to 200 μm diameter. The combination of the small cavity volume and the focused laser spots is intended to improve the electron temperature with limited laser energy since the electron temperature is a key issue for high x-ray conversion efficiency. Thomson scattering was adopted to experimentally probe the electron temperatures at special time and space zones as well as the average temperature obtained from the Ti K-shell spectrum. The evolutions of the electron temperature and density are predicted by the radiation hydrodynamic simulation. A top view and two photon energy bands of x-ray source images provide a way to directly observe the plasma movement toward the cavity axis and distinguish the different emission mechanisms between the Ti K-shell and lower energy x rays. Six Higher-energy x-ray detectors located at different angles were used to record the Ti K-shell x-ray emission and demonstrate its isotropic feature. The characteristics of the x-ray radiate intensity including the time evolution, the angular distribution, and the total yields for both the photon energy regions above and below 4 keV are compared between the cavity and planar targets. Obviously, different behaviors were found between the two photon energy regions and the two types of targets. The x-ray conversion efficiency of the Ti cylinder was determined to be ∼4% and ∼21% in 4π sr in the Ti K-shell (4–7 keV) and  & lt;4 keV range, respectively. The Ti K-shell conversion efficiency obtained in the present experiments is between the ones driven by 13.5 and 4.5 kJ laser energy at OMEGA.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Physics of Plasmas, AIP Publishing, Vol. 20, No. 10 ( 2013-10-01)
    Abstract: Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 1014 to 1.8 × 1015 W/cm2. Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2013
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Physics of Plasmas, AIP Publishing, Vol. 17, No. 6 ( 2010-06-01)
    Abstract: Hydrodynamic processes of radiation-ablated high-Z plasmas have great influence on the x-ray radiation transport both in a high-Z tube with low-Z foam filling and in a low-Z filling indirect drive cavity. Using the intense x-ray radiation to heat a low-Z foam-tamped high-Z gold plate from a half cavity, the hydrodynamic moving process of the x-ray-ablated gold plasma has been studied by an imaging method with Ti He-α line emission as the backlighter source. The hydrodynamic trajectory of the x-ray-heated gold plasma was obtained and the average trajectory velocity of (36.5±1.2) km/s was derived. The experimental trajectory was compared with the simulations using the one-dimensional (1D) RDMG [P. Gu et al., Sci. China, Ser. G 48, 345 (2005)] and two-dimensional (2D) LARED-R [K. Lan et al., Laser Part. Beams 23, 275 (2005)] codes separately. It is shown that the 2D LARED-R code simulated the measured plasma trajectory much better than the 1D RDMG code due to the fact that the lateral x-ray radiation loss was taken into account in the 2D LARED-R but not in the 1D RDMG simulations.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2010
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...