GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 12 ( 2022-1-6)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 12 ( 2022-1-6)
    Kurzfassung: Immunotherapy, especially checkpoint inhibitors targeting PD-1 or PD-L1, has revolutionized cancer therapy. However, PD-1/PD-L1 inhibitors have not been investigated thoroughly in glioblastoma (GBM). Studies have shown that polymerase 1 and transcript release factor (PTRF/Cavin-1) has an immune-suppressive function in GBM. Thus, the relationship between PTRF and PD-L1 and their role in immune suppression requires further investigation in GBM. Methods We used public databases and bioinformatics analysis to investigate the relationship between PTRF and PD-L1. We next confirmed the predicted relationship between PTRF and PD-L1 in primary GBM cell lines by using different experimental approaches. RIP-Seq, RIP, ChIP, and qRT-PCR were conducted to explore the molecular mechanism of PTRF in immunosuppression. Results We found that PTRF stabilizes lncRNA NEAT1 to induce NF-κB and PD-L1 and promotes immune evasion in GBM. PTRF was found to correlate with immunosuppression in the public GBM databases. PTRF increased the level of PD-L1 in primary cell lines from GBM patients. We carried out RIP-Seq of GBM cells and found that PTRF interacts with lncRNA NEAT1 and stabilizes its mRNA. PTRF also promoted the activity of NF-κB by suppressing UBXN1 expression via NEAT1 and enhanced the transcription of PD-L1 through NF-κB activation. Finally, PTRF promoted immune evasion in GBM cells by regulating PD-1 binding and PD-L1 mediated T cell cytotoxicity. Conclusions In summary, our study identified the PTRF- NEAT1 -PD-L1 axis as a novel immune therapeutic target in GBM.
    Materialart: Online-Ressource
    ISSN: 1664-3224
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2606827-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Neuro-Oncology, Oxford University Press (OUP), ( 2023-08-31)
    Kurzfassung: Temozolomide (TMZ) treatment efficacy in glioblastoma is determined by various mechanisms such as TMZ efflux, autophagy, base excision repair (BER) pathway, and the level of O6-methylguanine-DNA methyltransferase (MGMT). Here, we reported a novel small-molecular inhibitor (SMI) EPIC-1042 (C20H28N6) with the potential to decrease TMZ efflux and promote PARP1 degradation via autolysosomes in the early stage. Methods EPIC-1042 was obtained from receptor-based virtual screening. Co-immunoprecipitation and pull-down assays were applied to verify the blocking effect of EPIC-1042. Western blotting, co-immunoprecipitation, and immunofluorescence were used to elucidate the underlying mechanisms of EPIC-1042. In vivo experiments were performed to verify the efficacy of EPIC-1042 in sensitizing glioblastoma cells to TMZ. Results EPIC-1042 physically interrupted the interaction of PTRF/Cavin1 and caveolin-1, leading to reduced secretion of small extracellular vesicles (sEVs) to decrease TMZ efflux. It also induced PARP1 autophagic degradation via increased p62 expression that more p62 bound to PARP1 and specially promoted PARP1 translocation into autolysosomes for degradation in the early stage. Moreover, EPIC-1042 inhibited autophagy flux at last. The application of EPIC-1042 enhanced TMZ efficacy in glioblastoma in vivo. Conclusion EPIC-1042 reinforced the effect of TMZ by preventing TMZ efflux, inducing PARP1 degradation via autolysosomes to perturb the BER pathway and recruitment of MGMT, and inhibiting autophagy flux in the later stage. Therefore, this study provided a novel therapeutic strategy using the combination of TMZ with EPIC-1042 for glioblastoma treatment.
    Materialart: Online-Ressource
    ISSN: 1522-8517 , 1523-5866
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2023
    ZDB Id: 2094060-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Theranostics, Ivyspring International Publisher, Vol. 9, No. 16 ( 2019), p. 4608-4623
    Materialart: Online-Ressource
    ISSN: 1838-7640
    Sprache: Englisch
    Verlag: Ivyspring International Publisher
    Publikationsdatum: 2019
    ZDB Id: 2592097-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Cancer Communications, Wiley, Vol. 43, No. 12 ( 2023-12), p. 1326-1353
    Kurzfassung: Metabolism reprogramming plays a vital role in glioblastoma (GBM) progression and recurrence by producing enough energy for highly proliferating tumor cells. In addition, metabolic reprogramming is crucial for tumor growth and immune‐escape mechanisms. Epidermal growth factor receptor ( EGFR ) amplification and EGFR‐vIII mutation are often detected in GBM cells, contributing to the malignant behavior. This study aimed to investigate the functional role of the EGFR pathway on fatty acid metabolism remodeling and energy generation. Methods Clinical GBM specimens were selected for single‐cell RNA sequencing and untargeted metabolomics analysis. A metabolism‐associated RTK‐fatty acid‐gene signature was constructed and verified. MK‐2206 and MK‐803 were utilized to block the RTK pathway and mevalonate pathway induced abnormal metabolism. Energy metabolism in GBM with activated EGFR pathway was monitored. The antitumor effect of Osimertinib and Atorvastatin assisted by temozolomide (TMZ) was analyzed by an intracranial tumor model in vivo. Results GBM with high EGFR expression had characteristics of lipid remodeling and maintaining high cholesterol levels, supported by the single‐cell RNA sequencing and metabolomics of clinical GBM samples. Inhibition of the EGFR/AKT and mevalonate pathways could remodel energy metabolism by repressing the tricarboxylic acid cycle and modulating ATP production. Mechanistically, the EGFR/AKT pathway upregulated the expressions of acyl‐CoA synthetase short‐chain family member 3 (ACSS3), acyl‐CoA synthetase long‐chain family member 3 (ACSL3), and long‐chain fatty acid elongation‐related gene ELOVL fatty acid elongase 2 (ELOVL2) in an NF‐κB‐dependent manner. Moreover, inhibition of the mevalonate pathway reduced the EGFR level on the cell membranes, thereby affecting the signal transduction of the EGFR/AKT pathway. Therefore, targeting the EGFR/AKT and mevalonate pathways enhanced the antitumor effect of TMZ in GBM cells and animal models. Conclusions Our findings not only uncovered the mechanism of metabolic reprogramming in EGFR‐activated GBM but also provided a combinatorial therapeutic strategy for clinical GBM management.
    Materialart: Online-Ressource
    ISSN: 2523-3548 , 2523-3548
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2023
    ZDB Id: 2922913-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Macromolecular Bioscience, Wiley, Vol. 21, No. 8 ( 2021-08)
    Kurzfassung: Exosomes derived from non‐tumor cells hold great potential as drug delivery vehicles because of their good biosafety and natural transference of bioactive cargo between cells. However, compared to tumor‐derived exosomes, efficient delivery is limited by their weak interactions with tumor cells. It is essential to engineer exosomes that improve tumor cellular internalization efficiency. A simple and effective strategy to enhance tumor cell uptake by engineering the exosome membrane lipids can be established by drawing on the role of lipids in tumor exosomes interacting with tumor cells. Amphiphilic phosphatidylcholine (PC) molecules are inserted into the membrane lipid layer of reticulocyte‐derived exosomes (Exos) by simple incubation to construct PC‐engineered exosomes (PC‐Exos). It is demonstrated that PC‐Exos showed significantly enhanced tumor cell internalization and uptake rate compared to native Exos, up to a twofold increase. After therapeutic agent loading, PC‐Exos remarkably promotes intracellular drug or RNA accumulation in cancer cells, thus showing enhanced in vitro anti‐tumor activity. This work demonstrates the crucial role of engineering exosomal lipids in modulating cancer cellular uptake, which may shed light on the design of high‐efficiency exosome‐based drug delivery carriers.
    Materialart: Online-Ressource
    ISSN: 1616-5187 , 1616-5195
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2021
    ZDB Id: 2039130-4
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Cancer Letters, Elsevier BV, Vol. 406 ( 2017-10), p. 12-21
    Materialart: Online-Ressource
    ISSN: 0304-3835
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2017
    ZDB Id: 195674-7
    ZDB Id: 2004212-7
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Biomaterials, Elsevier BV, Vol. 258 ( 2020-11), p. 120275-
    Materialart: Online-Ressource
    ISSN: 0142-9612
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2020
    ZDB Id: 2004010-6
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. 11 ( 2022-11-02), p. 1871-1883
    Kurzfassung: Targeting glioblastoma (GBM) energy metabolism through multiple metabolic pathways has emerged as an effective therapeutic approach. Dual inhibition of phospholipid and mitochondrial metabolism with cytoplasmic phospholipase A2 (cPLA2) knockdown and metformin treatment could be a potential strategy. However, the strategic prerequisite is to explore a carrier capable of co-delivering the therapeutic combination to cross the blood-brain barrier (BBB) and preferentially accumulate at the GBM site. Methods Blood exosomes (Exos) were selected as the combination delivery carriers. The cellular uptake of Exos and the therapeutic effects of the combination strategy were evaluated in primary GBM cells. In vivo GBM-targeted delivery efficiency and anti-GBM efficacy were tested in a patient-derived xenograft (PDX) model. Results Here, we showed that the Exos-mediated cPLA2 siRNA/metformin combined strategy could regulate GBM energy metabolism for personalized treatment. Genomic analysis and experiments showed that polymerase 1 and transcript release factor (PTRF, a biomarker of GBM) positively regulated the uptake of Exos by GBM cells, confirming the feasibility of the delivery strategy. Further, Exos could co-load cPLA2 siRNA (sicPLA2) and metformin and co-deliver them across the BBB and into GBM tissue. The mitochondrial energy metabolism of GBM was impaired with this combination treatment (Exos-Met/sicPLA2). In the PDX GBM model, systemic administration of Exos-Met/sicPLA2 reduced tumor growth and prolonged survival. Conclusions Our findings demonstrated that Exos-based combined delivery of sicPLA2 and metformin selectively targeted the GBM energy metabolism to achieve antitumor effects, showing its potential as a personalized therapy for GBM patients.
    Materialart: Online-Ressource
    ISSN: 1522-8517 , 1523-5866
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2022
    ZDB Id: 2094060-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 14 ( 2019-04-02), p. 6975-6984
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 14 ( 2019-04-02), p. 6975-6984
    Kurzfassung: Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma. The CDC20-M, containing 139 members involved in cell proliferation, DNA damage response, and chromosome segregation, was found to be consistently coexpressed in glioma transcriptomes. The coexpression of these genes was conserved across multiple species and organ systems, particularly in human neural stem and progenitor cells. CDC20-M expression was not correlated with the morphological subtypes, nor with the recently defined molecular subtypes of glioma. CDC20-M signature was an independent and robust predictor for poorer prognosis in over 1,000 patients from four large databases. Elevated CDC20-M signature enabled the identification of individual glioma samples with severe chromosome instability and mutation burden and of primary glioma cell lines with extensive mitotic errors leading to chromosome mis-segregation. AURKA, a core member of CDC20-M, was amplified in one-third of CDC20-M–high gliomas with gene-dosage–dependent expression. MLN8237, a Food and Drug Administration-approved AURKA inhibitor, selectively killed temozolomide-resistant primary glioma cells in vitro and prolonged the survival of a patient-derived xenograft mouse model with a high–CDC20-M signature. Our findings suggest that application of the CDC20-M signature may permit more selective use of adjuvant therapies for glioma patients and that dysregulated CDC20-M members may provide a therapeutic vulnerability in glioma.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2019
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 23, No. 3 ( 2021-03-25), p. 387-399
    Kurzfassung: Metabolism remodeling is a hallmark of glioblastoma (GBM) that regulates tumor proliferation and the immune microenvironment. Previous studies have reported that increased polymerase 1 and transcript release factor (PTRF) levels are associated with a worse prognosis in glioma patients. However, the biological role and the molecular mechanism of PTRF in GBM metabolism remain unclear. Methods The relationship between PTRF and lipid metabolism in GBM was detected by nontargeted metabolomics profiling and subsequent lipidomics analysis. Western blotting, quantitative real-time PCR, and immunoprecipitation were conducted to explore the molecular mechanism of PTRF in lipid metabolism. A sequence of in vitro and in vivo experiments (both xenograft tumor and intracranial tumor mouse models) were used to detect the tumor-specific impacts of PTRF. Results Here, we show that PTRF triggers a cytoplasmic phospholipase A2 (cPLA2)–mediated phospholipid remodeling pathway that promotes GBM tumor proliferation and suppresses tumor immune responses. Research in primary cell lines from GBM patients revealed that cells overexpressing PTRF show increased cPLA2 activity—resulting from increased protein stability—and exhibit remodeled phospholipid composition. Subsequent experiments revealed that PTRF overexpression alters the endocytosis capacity and energy metabolism of GBM cells. Finally, in GBM xenograft and intracranial tumor mouse models, we showed that inhibiting cPLA2 activity blocks tumor proliferation and prevents PTRF-induced reduction in CD8+ tumor-infiltrating lymphocytes. Conclusions The PTRF-cPLA2 lipid remodeling pathway promotes tumor proliferation and suppresses immune responses in GBM. In addition, our findings highlight multiple new therapeutic targets for GBM.
    Materialart: Online-Ressource
    ISSN: 1522-8517 , 1523-5866
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2021
    ZDB Id: 2094060-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...