GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Lancet Oncology, Elsevier BV, Vol. 23, No. 1 ( 2022-01), p. 149-160
    Type of Medium: Online Resource
    ISSN: 1470-2045
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2049730-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Radiology: Imaging Cancer, Radiological Society of North America (RSNA), Vol. 5, No. 4 ( 2023-07-01)
    Type of Medium: Online Resource
    ISSN: 2638-616X
    Language: English
    Publisher: Radiological Society of North America (RSNA)
    Publication Date: 2023
    detail.hit.zdb_id: 2986040-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: npj Breast Cancer, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2021-10-05)
    Abstract: I-SPY2 is an adaptively randomized phase 2 clinical trial evaluating novel agents in combination with standard-of-care paclitaxel followed by doxorubicin and cyclophosphamide in the neoadjuvant treatment of breast cancer. Ganitumab is a monoclonal antibody designed to bind and inhibit function of the type I insulin-like growth factor receptor (IGF-1R). Ganitumab was tested in combination with metformin and paclitaxel (PGM) followed by AC compared to standard-of-care alone. While pathologic complete response (pCR) rates were numerically higher in the PGM treatment arm for hormone receptor-negative, HER2-negative breast cancer (32% versus 21%), this small increase did not meet I-SPY’s prespecified threshold for graduation. PGM was associated with increased hyperglycemia and elevated hemoglobin A1c (HbA1c), despite the use of metformin in combination with ganitumab. We evaluated several putative predictive biomarkers of ganitumab response (e.g., IGF-1 ligand score, IGF-1R signature, IGFBP5 expression, baseline HbA1c). None were specific predictors of response to PGM, although several signatures were associated with pCR in both arms. Any further development of anti-IGF-1R therapy will require better control of anti-IGF-1R drug-induced hyperglycemia and the development of more predictive biomarkers.
    Type of Medium: Online Resource
    ISSN: 2374-4677
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2843288-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: New England Journal of Medicine, Massachusetts Medical Society, Vol. 375, No. 1 ( 2016-07-07), p. 23-34
    Type of Medium: Online Resource
    ISSN: 0028-4793 , 1533-4406
    RVK:
    Language: English
    Publisher: Massachusetts Medical Society
    Publication Date: 2016
    detail.hit.zdb_id: 1468837-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 4_Supplement ( 2020-02-15), p. P6-02-01-P6-02-01
    Abstract: Background: Strong background parenchymal enhancement (BPE) may cause overestimation in tumor volume measured from dynamic contrast-enhanced (DCE) MRI, which may adversely affect the ability of MR tumor volume to predict treatment outcome for patients undergoing neoadjuvant chemotherapy (NAC). Specifically, an overestimation of tumor volume can result in misclassification of patients with complete pathologic response (pCR) as non-responders, leading to less confidence in MRI prediction. As well, overestimation of extent of disease might lead to more aggressive surgical therapy than necessary. This study investigated whether high BPE in the contralateral breast influences the predictive performance of MRI-measured functional tumor volume (FTV) for patients with locally advanced breast cancer undergoing NAC. Methods: patients (n=990) enrolled in the I-SPY 2 TRIAL who were randomized to the graduated experimental drug arms or controls from 2010 to 2016 were analyzed. Each patient had 4 MRI exams: pre-NAC (T0), after 3 weeks of NAC (T1), between NAC regimens (T2), and post-NAC (T3). FTV was calculated at each MRI exam by summing voxels meeting enhancement thresholds. Background parenchymal enhancement (BPE) in the contralateral breast was calculated automatically as mean percentage enhancement on the early (nominal 150sec post-contrast) image in the fibroglandular tissue segmented from 5 continuous axial slices centered in the inferior-to-superior stack. For each treatment time point, patients having both FTV and BPE measurements were included in the analysis. The area under the ROC curve (AUC) was estimated as the association between FTV and pCR at T1, T2, and T3. The analysis was conducted in the full patient cohort and in sub-cohorts defined by hormone receptor (HR) and HER2 status. In each patient cohort, a cut-off BPE value was selected to classify patients with high vs. low BPE by testing AUCs estimated with low-BPE patients reached maximum when the cut-off value varied from median to maximum in steps of 10%. Results: Out of 990 patients, 878 had pCR outcome data (pCR or non-pCR, pCR rate = 35%). Table 1 shows the number of patients, pCR rate, and AUC of FTV for predicting pCR using all patients available vs. a subset patients with low BPE ( & lt; BPE cut-off). In the full cohort, AUC increased slightly across all time points after patients with high BPE were removed. In the HR+/HER2- subtype, AUC increased at T1 after removal of cases with high BPE (0.65 vs. 0.71). For HR-/HER2+, AUC increased substantially after removal of high BPE cases (0.65 to 0.86 at T1, 0.71 to 0.87 at T2, and 0.71 to 0.89 at T3), with greater improvement at the early time point (T1) compared to later time points (T2 and T3). Only a slight improvement in the AUC was observed in the HR+/HER2+ and HR-/HER2- subtypes across all time points. Conclusions: High background parenchymal enhancement adversely affected the predictive performance of functional tumor volume measured by DCE-MRI, at early treatment time point for HR+/HER2- and across all time points for HR-/HER2+ cancer subtype. The adverse effect might be offset using subtype-optimized enhancement threshold in calculating functional tumor volume. Table 1 Effect of BPE on the prediction of pCR using FTV at various treatment time pointsT1T2T3npCR rateAUCBPE cut-offnpCR rateAUCBPE cut-offnpCR rateAUCBPE cut-offFullAll64734%0.662762334%0.701761134%0.6925Subset45334%0.6831133%0.7230534%0.72HR+/HER2-All26218%0.651924918%0.718225518%0.7519Subset13118%0.7124818%0.7120419%0.76HR+/HER2+All10636%0.642110538%0.62269634%0.7120Subset5332%0.668438%0.665740%0.73HR-/HER2+All5175%0.65204774%0.71204973%0.7116Subset3073%0.862871%0.872475%0.89HR-/HER2-All22842%0.682822243%0.751821143%0.6916Subset15940%0.7111137%0.7810540%0.75 Citation Format: Wen Li, Natsuko Onishi, David C Newitt, Roy Harnish, Ella F Jones, Lisa J Wilmes, Jessica Gibbs, Elissa Price, Bonnie N Joe, A. Jo Chien, Donald A Berry, Judy C Boughey, Kathy S Albain, Amy S Clark, Kirsten K Edmiston, Anthony D Elias, Erin D Ellis, David M Euhus, Heather S Han, Claudine Isaacs, Qamar J Khan, Julie E Lang, Janice Lu, Jane L Meisel, Zaha Mitri, Rita Nanda, Donald W Northfelt, Tara Sanft, Erica Stringer-Reasor, Rebecca K Viscusi, Anne M Wallace, Douglas Yee, Rachel Yung, Michelle E Melisko, Jane Perlmutter, Hope S Rugo, Richard Schwab, W. Fraser Symmans, Laura J van't Veer, Christina Yau, Smita M Asare, Angela DeMichele, Sally Goudreau, Hiroyuki Abe, Deepa Sheth, Dulcy Wolverton, Kelly Fountain, Richard Ha, Ralph Wynn, Erin P Crane, Charlotte Dillis, Theresa Kuritza, Kevin Morley, Michael Nelson, An Church, Bethany Niell, Jennifer Drukteinis, Karen Y Oh, Neda Jafarian, Kathy Brandt, Sadia Choudhery, Dae Hee Bang, Christiane Mullins, Stefanie Woodard, Kathryn W Zamora, Haydee Ojeda-Fornier, Mohammad Eghedari, Pulin Sheth, Linda Hovanessian-Larsen, Mark Rosen, Elizabeth S McDonald, Michael Spektor, Marina Giurescu, Mary S Newell, Michael A Cohen, Elise Berman, Constance Lehman, William Smith, Kim Fitzpatrick, Marisa H Borders, Wei Yang, Basak Dogan, Laura J Esserman, Nola M Hylton. The effect of background parenchymal enhancement on the predictive performance of functional tumor volume measured in MRI [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr P6-02-01.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 4_Supplement ( 2020-02-15), p. PD9-04-PD9-04
    Abstract: Background: In an adaptive randomized trial, when new treatment combinations are being tested, it is important to be able to identify patients who are progressing on treatment so that they can be changed to a different therapeutic regimen. We know that even within the molecularly high risk patients in I-SPY 2, there is considerable variation in biology. In this study, we will present results of using MRI-calculated functional tumor volume (FTV) to identify tumor progression for each breast cancer subtype. Methods: Patients (n=990) enrolled in the I-SPY 2 TRIAL who were randomized to the graduated experimental drug arms or controls from 2010 to 2016 were analyzed. Four MRI exams were performed for each patient: pre-NAC (T0), after 3 weeks of NAC (T1), between regimens (T2), and post-NAC (T3). Functional tumor volume (FTV) was calculated at each exam by summing voxels meeting enhancement thresholds. Tumor progression at T1, T2 or T3 was identified by a positive FTV change relative to T0. Visual inspection was used to exclude false progression due to strong background parenchymal enhancement post-contrast, prominent vessels, motion, or insufficient image quality. pCR was defined as no invasive disease in the breast and lymph nodes. Negative predictive value for pCR was defined as:NPV=number of true non-pCRs / number of patients with MRI assessed tumor progressions, where “true non-pCRs” referred to patients who were non-pCRs at surgery and were assessed as progressors by MRI. The analysis was performed in the full cohort and in sub-cohorts defined by HR and HER2 statuses. Results: Out of 990 patients, 878 had pCR outcome data (pCR or non-pCR, pCR rate = 35%). Total and non-pCR numbers for each subtype, number of patients with tumor progression assessed by MRI at T1, T2, and T3, and NPVs, are shown in Table 1. In the full cohort, the NPV increased consistently over treatment, from T1 (NPV=83%) to T2 (93%), and to T3 (100%). The HER2+ cancer subtypes showed fewer MRI-assessed tumor progressions than HER2- subtypes: e.g. 10/209 (5%) vs. 108/669 (16%) at T1. NPV was 100% for HER2+ subtypes at T1 and T2 except for a single misclassification of a HR- tumor at T1. Only 6 tumor progressors, all HER2- were identified at T3, and all were confirmed at surgery as non-pCRs (NPV=100%). For HR+/HER2-, the NPV increased slightly from 89% at T1 to 91% at T2, while triple negative subtype had a more substantial increase, from 78% to 92%. Conclusions: Our study showed strong association between tumor progressors assessed by MRI with true non-pCRs after NAC. For HER2+ tumors, although MRI progressors are rare, they strongly indicate non-pCR at all treatment time points, while HER2- subtypes show more accurate results later in treatment. We are evaluating MRI change at 6 weeks to determine if that time point is sufficient to predict progressors. Table 1 MRI assessed tumor progression at different treatment time pointN/non-pCRs/%non-pCRMRI assessed tumor progressionT1 (after 3 weeks)T2 (inter-regimen)T3 (post-NAC)NNPV (%)NNPV (%)NNPV (%)Full cohort878/572/65%11883.14192.76100%HR+/HER2-344/280/81%4588.91190.93100%HR+/HER2+134/85/63%610021000N/AHR-/HER2+75/23/31%47521000N/Atriple negative325/184/57%6377.82692.33100% Citation Format: Wen Li, Natsuko Onishi, David C Newitt, Jessica Gibbs, Lisa J Wilmes, Ella F Jones, Bonnie N Joe, Laura S Sit, Christina Yau, A. Jo Chien, Elissa Price, Kathy S Albain, Theresa Kuritza, Kevin Morley, Judy C Boughey, Kathy Brandt, Sadia Choudhery, Amy S Clark, Mark Rosen, Elizabeth S McDonald, Anthony D Elias, Dulcy Wolverton, Kelly Fountain, David M Euhus, Heather S Han, Bethany Niell, Jennifer Drukteinis, Julie E Lang, Janice Lu, Jane L Meisel, Zaha Mitri, Rita Nanda, Donald W Northfelt, Tara Sanft, Erica Stringer-Reasor, Rebecca K Viscusi, Anne M Wallace, Douglas Yee, Rachel Yung, Smita M Asare, Michelle E Melisko, Jane Perlmutter, Hope S Rugo, Richard Schwab, W. Fraser Symmans, Laura J van't Veer, Donald A Berry, Angela DeMichele, Hiroyuki Abe, Deepa Sheth, Kirsten K Edmiston, Erin D Ellis, Richard Ha, Ralph Wynn, Erin P Crane, Charlotte Dillis, Michael Nelson, An Church, Claudine Isaacs, Qamar J Khan, Karen Y Oh, Neda Jafarian, Dae Hee Bang, Christiane Mullins, Stefanie Woodard, Kathryn W Zamora, Haydee Ojeda-Fornier, Pulin Sheth, Linda Hovanessian-Larsen, Mohammad Eghtedari, Michael Spektor, Marina Giurescu, Mary S Newell, Michael A Cohen, Elise Berman, Constance Lehman, William Smith, Kim Fitzpatrick, Marisa H Borders, Wei Yang, Basak Dogan, Sally Goudreau, Thelma Brown, Laura J Esserman, Nola M Hylton. Breast cancer subtype specific association of pCR with MRI assessed tumor volume progression during NAC in the I-SPY 2 trial [abstract] . In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr PD9-04.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: New England Journal of Medicine, Massachusetts Medical Society, Vol. 375, No. 1 ( 2016-07-07), p. 11-22
    Type of Medium: Online Resource
    ISSN: 0028-4793 , 1533-4406
    RVK:
    Language: English
    Publisher: Massachusetts Medical Society
    Publication Date: 2016
    detail.hit.zdb_id: 1468837-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 4_Supplement ( 2022-02-15), p. PD8-07-PD8-07
    Abstract: Background: I-SPY 2 is a multicenter, phase 2 trial using response-adaptive randomization within molecular subtypes defined by receptor status and MammaPrint (MP) risk to evaluate novel agents as neoadjuvant therapy for women with high-risk breast cancer. Tucatinib is a potent HER2 (ErbB2) tyrosine kinase inhibitor, selective for HER2 vs. epidermal growth factor receptor (EGFR) and is active vs. brain metastases. Safety and efficacy of tucatinib combined with paclitaxel, pertuzumab, and trastuzumab are unknown and were tested in a planned 10 patient (pt) safety run-in of the I-SPY 2 trial. Methods: Women with tumors ≥ 2.5cm were eligible for screening. Only pts with tumors that were HER2+ by FISH were eligible for this treatment. Treatment included tucatinib (max dose 300 mg) BID for 12 weeks with weekly paclitaxel 80 mg/m2 and trastuzumab (2 mg/kg weekly following loading), and pertuzumab (420 mg every 3 weeks following loading), followed by doxorubicin/cyclophosphamide (AC) every 2 weeks x 4. The control arm was weekly paclitaxel and trastuzumab with pertuzumab for 12 weeks followed by AC every 2 weeks x 4. All pts undergo serial MR imaging and response at 3 & 12 weeks is combined with real time pCR data to estimate, and continuously update, the predicted pCR rate for each trial arm. The goal of the trial is to identify/graduate regimens with ≥85.% Bayesian predictive probability of success (i.e. demonstrating superiority to control) in a future 300-patient phase 3 neoadjuvant trial with a pCR endpoint. This run-in arm was conducted to determine safety of combining tucatinib with paclitaxel/trastuzumab/pertuzumab, monitoring special adverse events of interest including LFT elevations and gastrointestinal toxicities.Methods: The I-SPY 2 methods have been previously published. Results: 20 pts were evaluable in tucatinib treatment arm. The control arm included 329 historical controls enrolled since April 2010. The initial tucatinib dose was 300 mg BID. After enrollment of the first 8 pts, there were 3 pts with grade 3 LFT elevations, 2 pts with grade 2/3 diarrhea, 1 pt with grade 2 neutropenia, and 1 pt with grade 3 nausea. After this safety review, the tucatinib dose was lowered to 250 mg BID. Among 5 additional pts enrolled, 3 developed grade 2/3 LFT abnormalities. The protocol was then modified to tucatinib 150 mg BID days 1-28 and then 250 mg BID days 29-84; 7 pts were treated. Safety data were reviewed after 20 pts were enrolled; the arm was then suspended due to similar LFT elevations regardless of tucatinib dose reduction or schedule. 7 of 20 pts (35%) had reversible Grade 3 or higher ALT/AST elevation (Table). No pt met criteria for Hy’s Law. In terms of efficacy, 12 of 14 evaluable pts had & gt; 80% reduction of tumor volume by 12 weeks, measured by MRI assessment of functional tumor volume (FTV). Conclusion: The goal of the run-in arm was to determine the safety of adding tucatinib to the combination of paclitaxel/trastuzumab/pertuzumab. The addition of tucatinib resulted in unacceptable but reversible LFT elevations despite tucatinib dose reduction. Tucatinib containing therapy resulted in & gt;80% decline in tumor volume at 12 weeks in 86% of pts. Tucatinib showed a high level of activity when combined with paclitaxel/trastuzumab/pertuzumab, but the combination is not feasible. Table: Number of pts with grade 2, 3, and 4 LFT elevations by treatment schedule (highest grade per patient per event, ALT or Treatment scheduleGrade 2 LFT elevationGrade 3 LFT elevationGrade 4 LFT elevationTucatinib 300 mg BID030Tucatinib 250 mg BID210Tucatinib 150 mg BID days 1-28 followed by 250 mg BID days 29 to 84112 Citation Format: David A Potter, Erin Roesch, Christina Yau, Ruixiao Lu, Denise Wolf, Susan Samson, Debra Stafford, Kathy S Albain, Claudine Isaacs, Meghana Trivedi, Douglas Yee, Judy Boughey, Alexandra Thomas, A. Jo Chien, Nola Hylton, Wen Li, Angela DeMichele, Jane Perlmutter, W. Fraser Symmans, Dawn L Hershman, Michelle Melisko, Laura J van 't Veer, Amy Wilson, Smita M Asare, Donald A Berry, Richard Schwab, Hope S Rugo, Laura J Esserman. Evaluation of Tucatinib + (Paclitaxel + Pertuzumab + Trastuzumab) followed by AC in high-risk HER2 positive (HER2+) stage II/III breast cancer: Results from the I-SPY 2 TRIAL [abstract]. In: Proceedings of the 2021 San Antonio Breast Cancer Symposium; 2021 Dec 7-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2022;82(4 Suppl):Abstract nr PD8-07.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 19, No. 11 ( 2013-06-01), p. 2817-2823
    Abstract: New approaches to drug development are critically needed to lessen the time, cost, and resources necessary to identify and optimize active agents. Strategies to accelerate drug development include testing drugs earlier in the disease process, such as the neoadjuvant setting. The U.S. Food and Drug Administration (FDA) has issued guidance designed to accelerate drug approval through the use of neoadjuvant studies in which the surrogate short-term endpoint, pathologic response, can be used to identify active agents and shorten the time to approval of both efficacious drugs and biomarkers identifying patients most likely to respond. However, this approach has unique challenges. In particular, issues of patient safety are paramount, given the exposure of potentially curable patients to investigational agents with limited safety experience. Key components to safe drug development in the neoadjuvant setting include defining a study population at sufficiently poor prognosis with standard therapy to justify exposure to investigational agents, defining the extent and adequacy of safety data from phase I, detecting potentially harmful interactions between investigational and standard therapies, improving study designs, such as adaptive strategies, that limit patient exposure to ineffective agents, and intensifying safety monitoring in the course of the trial. The I-SPY2 trial is an example of a phase II neoadjuvant trial of novel agents for breast cancer in which these issues have been addressed, both in the design and conduct of the trial. These adaptations of phase II design enable acceleration of drug development by reducing time and cost to screen novel therapies for activity without compromising safety. Clin Cancer Res; 19(11); 2817–23. ©2013 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: JAMA Oncology, American Medical Association (AMA), Vol. 7, No. 11 ( 2021-11-01), p. 1654-
    Type of Medium: Online Resource
    ISSN: 2374-2437
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...