GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (3)
  • Yang, Yonghua  (3)
Material
Publisher
  • American Society of Hematology  (3)
Language
Years
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 113, No. 17 ( 2009-04-23), p. 4038-4048
    Abstract: Pan-histone deacetylase inhibitors, for example, vorinostat and panobinostat (LBH589; Novartis Pharmaceuticals, East Hanover, NJ), have shown clinical efficacy against advanced cutaneous T-cell lymphoma (CTCL). However, the molecular basis of this activity remains unclear. HDAC7, a class IIA histone deacetylase (HDAC), is overexpressed in thymocytes, where it represses expression of the proapoptotic nuclear orphan receptor Nur77. Here, we demonstrate that treatment with panobinostat rapidly inhibits the in vitro and intracellular activity, as well as the mRNA and protein levels of HDAC7, and induces expression and translocation of Nur77 to the mitochondria. There, Nur77 converts death resistance protein Bcl-2 into a killer protein, promoting cell death of cultured and patient-derived human CTCL cells. Treatment with panobinostat improved survival of athymic nude mice implanted with human CTCL cells. Ectopic expression of Nur77 induced apoptosis and sensitized HH cells to panobinostat, whereas combined knockdown of Nur77 and its family member Nor1 was necessary to inhibit panobinostat-induced apoptosis of CTCL cells. Cotreatment with the Bcl-2/Bcl-xL antagonist ABT-737 decreased resistance and synergistically induced apoptosis of human CTCL cells. These findings mechanistically implicate HDAC7 and Nur77 in sensitizing human CTCL cells to panobinostat as well as suggest that cotreatment with an anti–Bcl-2 agent would augment the anti-CTCL activity of panobinostat.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 112, No. 7 ( 2008-10-01), p. 2896-2905
    Abstract: Hydroxamic acid analog pan-histone deacetylase (HDAC) inhibitors (HA-HDIs) have shown preclinical and clinical activity against human acute leukemia. Here we describe HA-HDI–resistant human acute myeloid leukemia (AML) HL-60 (HL-60/LR) cells that are resistant to LAQ824, vorinostat, LBH589, and sodium butyrate. HL-60/LR cells show increased expression of HDACs 1, 2, and 4 but lack HDAC6 expression, with concomitant hyperacetylation of heat shock protein 90 (hsp90). Treatment with HA-HDI failed to further augment hsp90 acetylation, or increase the levels of p21 or reactive oxygen species (ROSs), in HL-60/LR versus HL-60 cells. Although cross-resistant to antileukemia agents (eg, cytarabine, etoposide, and TRAIL), HL-60/LR cells are collaterally sensitive to the hsp90 inhibitor 17-AAG. Treatment with 17-AAG did not induce hsp70 or deplete the hsp90 client proteins AKT and c-Raf. HL-60/LR versus HL-60 cells display a higher growth fraction and shorter doubling time, along with a shorter interval to generation of leukemia and survival in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus, resistance of AML cells to HA-HDIs is associated with loss of HDAC6, hyperacetylation of hsp90, aggressive leukemia phenotype, and collateral sensitivity to 17-AAG. These findings suggest that an hsp90 inhibitor-based antileukemia therapy may override de novo or acquired resistance of AML cells to HA-HDIs.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 807-807
    Abstract: Hydroxamic acid analogue pan-histone deacetylase (HDAC) inhibitors (HA-HDIs), e.g., vorinostat, LAQ824 and LBH589, induce in vitro growth arrest, differentiation and apoptosis of human acute leukemia cells. Continuous and protracted use of HA-HDI, as currently used in the clinic against hematologic malignancies is likely to result in the emergence of HA-HDI resistance in leukemia cells. By continuous in vitro exposure of the AML HL-60 cells to the cinnamic acid analogue HA-HDI LAQ824, we have generated an in vitro and in vivo model of HA-HDI-resistant HL-60/LR cells, which are capable of growth in high concentrations (200 nM) of LAQ824. HL-60/LR versus the parental HL-60 cells have a shorter doubling time (12 versus 24 hours), increased % of cells in the S phase of the cell cycle (62.4 versus 40.0) and exhibit shorter interval to generation of leukemia and survival in NOD/SCID mice. As compared to HL-60, HL-60/LR cells have a resistance index of 100 for LAQ824, and are cross-resistant to other antileukemia agents exhibiting resistance index for LBH589: 50; trichostatin A: 15; vorinostat: 30; sodium butyrate: 10; etoposide: 5.0; Ara-C: 3.3 and TRAIL: 31.3. As compared to HL-60, HL-60/LR cells express higher levels of Bcl-xL and XIAP but lower levels of MCL-1. HL-60/LR versus HL-60 cells also express markedly reduced levels of Bim and Bak but higher levels of Bax. Although expressing higher levels of the death receptors (DR) 4 and 5 and lower levels of c-FLIP, HL-60/LR cells lack expression of caspase-8 and show barely detectable levels of FADD. Additionally, HL-60/LR versus HL-60 cells have markedly higher levels of AKT, c-RAF, and p-STAT5. Although expressing higher levels of HDAC1, HDAC2, and HDAC4, HL-60/LR cells lack detectable expression of HDAC6, with increased expression of hyper-acetylated hsp90 and α-tubulin- two of the substrates deacetylated by HDAC6. As compared to hsp90 in HL-60 cells, hyper-acetylated hsp90 in HL-60/LR cells exhibits less binding to ATP and p23. Utilizing a polyclonal antibody generated against acetylated hsp90α, confocal immunofluorescence microscopy showed higher and mostly cell surface expression of acetylated hsp90α in HL-60/LR versus HL-60 cells. As compared to HL-60, treatment of HL-60/LR cells with LAQ824 failed to induce p21 and hsp70, or increase the levels of hyper-acetylated hsp90 and α-tubulin. Notably, although cross-resistant to several anti-leukemia drugs, HL-60/LR cells are collaterally sensitive to the hsp90-inhibiting geldanamycin analogues 17-allylamino-demothoxy geldanamycin (17-AAG) and 17-DMAG with a four and five-fold increased sensitivity to 17-AAG and 17-DMAG, respectively. This was associated with a lack of both a 17-AAG mediated induction of hsp70 and a lesser decline in the levels of AKT and c-RAF in HL-60/LR versus HL-60 cells. Taken together, these findings elucidate several notable in vitro and in vivo biologic characteristics and drug-sensitivity profile of the first fully-characterized HA-HDI-resistant human AML cells. Our findings clearly demonstrate that in vitro resistance to HA-HDIs is associated with loss of HDAC6 expression, hyperacetylation of hsp90, aggressive leukemia phenotype, but cross-sensitivity to 17-AAG. These findings also suggest that hsp90 inhibitors should be tested for overriding de novo or acquired HA-HDI resistance in AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...