GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Yang, Yaqi  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    In: Nanomaterials, MDPI AG, Vol. 13, No. 1 ( 2022-12-30), p. 171-
    Abstract: The Cu/Zn-zeolitic imidazolate framework (Cu/Zn-ZIF) was synthesized using the traditional hydrothermal method, and its surface morphology was controlled by adding polyvinylpyrrolidone (PVP) during its synthesis. It was then calcined at 800 °C to form the nitrogen-containing carbon material CuZn@NC, which improved the electron transfer rate. Scanning electron microscopy (SEM), X-ray crystal diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to investigate the surface morphology and structure. Finally, the electrochemical sensing platform for luteolin was effectively constructed by changing the metal–ion ratio during synthesis to achieve the most suitable electrode material. The sensor platform detects luteolin well, with an operating curve equation of Ip (A) = 0.0571C (nM) − 1.2913 and a minimum detection limit of 15 nM, and the platform has been successfully employed for luteolin detection in real samples.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecules, MDPI AG, Vol. 27, No. 22 ( 2022-11-11), p. 7761-
    Abstract: Rutin, a natural flavonol glycoside, is widely present in plants and foods, such as black tea and wheat tea. The antioxidant and anti-inflammatory effects of flavonoids are well known. In this study, a new electrochemical rutin sensor was developed using multiwalled carbon nanotubes/aluminum-based metal–organic frameworks (MWCNT/CAU-1) (CAU−1, a type of Al-MOF) as the electrode modification material. The suspension of multiwalled carbon tubes was dropped on the surface of the GCE electrode to make MWCNT/GCEs, and CAU−1 was then attached to the electrode surface by electrodeposition. MWCNTs and CAU−1 were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Due to the synergistic effect of CAU−1 and MWCNT-COOH, the prepared sensor showed an ultrasensitive electrochemical response to rutin. Under optimized conditions, the sensor showed a linear relationship between 1.0 × 10−9~3.0 × 10−6 M with a detection limit of 6.7 × 10−10 M (S/N = 3). The sensor also showed satisfactory stability and accuracy in the detection of real samples.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...