GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 13 ( 2022-10-26)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-10-26)
    Abstract: Rhizosphere microbes play a vital role in plant health and defense against soil-borne diseases. Previous studies showed that maize-soybean relay strip intercropping altered the diversity and composition of pathogenic Fusarium species and biocontrol fungal communities in the soybean rhizosphere, and significantly suppressed soybean root rot. However, whether the rhizosphere bacterial community participates in the regulation of this intercropping on soybean root rot is not clear. In this study, the rhizosphere soil of soybean healthy plants was collected in the continuous cropping of maize-soybean relay strip intercropping and soybean monoculture in the fields, and the integrated methods of microbial profiling, dual culture assays in vitro , and pot experiments were employed to systematically investigate the diversity, composition, and function of rhizosphere bacteria related to soybean root rot in two cropping patterns. We found that intercropping reshaped the rhizosphere bacterial community and increased microbial community diversity, and meanwhile, it also recruited much richer and more diverse species of Pseudomonas sp., Bacillus sp., Streptomyces sp., and Microbacterium sp. in soybean rhizosphere when compared with monoculture. From the intercropping, nine species of rhizosphere bacteria displayed good antagonism against the pathogen Fusarium oxysporum B3S1 of soybean root rot, and among them, IRHB3 ( Pseudomonas chlororaphis ), IRHB6 ( Streptomyces ), and IRHB9 ( Bacillus ) were the dominant bacteria and extraordinarily rich. In contrast, MRHB108 ( Streptomyces virginiae ) and MRHB205 ( Bacillus subtilis ) were the only antagonistic bacteria from monoculture, which were relatively poor in abundance. Interestingly, introducing IRHB3 into the cultured substrates not only significantly promoted the growth and development of soybean roots but also improved the survival rate of seedlings that suffered from F. oxysporum infection. Thus, this study proves that maize-soybean relay strip intercropping could help the host resist soil-borne Fusarium root rot by reshaping the rhizosphere bacterial community and driving more beneficial microorganisms to accumulate in the soybean rhizosphere.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pathogens, MDPI AG, Vol. 9, No. 3 ( 2020-03-13), p. 211-
    Abstract: Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large loss in soybean production. Maize/soybean relay strip intercropping has significant advantages on the increase of crop yields and efficient use of agricultural resources, but its effects on the occurrence and pathogen population of soybean root rot are rarely known. In this study, root rot was investigated in the fields of the continuous maize/soybean strip relay intercropping and soybean monoculture. Fusarium species were isolated from diseased soybean roots and identified based on sequence analysis of translation elongation factor 1α (EF-1α) and RNA polymerase II second largest subunit (RPB2), and the diversity and pathogenicity of these species were also analyzed. Our results showed that intercropping significantly decreased soybean root rot over monoculture. A more diverse Fusarium population including Fusarium solani species complex (FSSC), F. incarnatum-equiseti species complex (FIESC), F. oxysporum, F. fujikuroi, F. proliferatum and F. verticillioides, F. graminearum and F. asiaticum was identified from intercropping while FSSC, FIESC, F. oxysporum, F. commune, F. asiaticum and F. meridionale were found from monoculture. All Fusarium species caused soybean root infection but exhibited distinct aggressiveness. The most aggressive F. oxysporum was more frequently isolated in monoculture than intercropping. FSSC and FIESC were the dominant species complex and differed in their aggressiveness. Additionally, F. fujikuroi, F. proliferatum and F. verticillioides were specifically identified from intercropping with weak or middle aggressiveness. Except for F. graminearum, F. meridionale and F. asiaticum were firstly reported to cause soybean root rot in China. This study indicates maize/soybean relay strip intercropping can reduce soybean root rot, change the diversity and aggressiveness of Fusarium species, which provides an important reference for effective management of this disease.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pathogens, MDPI AG, Vol. 9, No. 7 ( 2020-07-01), p. 531-
    Abstract: Maize/soybean relay strip intercropping has been widely practiced in Southwest China due to its high productivity and effective application of agricultural resources; however, several seedborne diseases such as seedling blight, pod and seed decay are frequently observed causing severe yield loss and low seed quality. So far, the population and pathogenicity of the seedborne fungi associated with intercropped soybean remain unexplored. In this study, seeds of 12 soybean cultivars screened for intercropping were collected from three growing regions in Sichuan Province of Southwest China, and the seedborne fungi were isolated from the surface-sterilized seeds. Based on sequence analysis of ribosomal DNA internal transcribed spacer (rDNA ITS), 148 isolates were identified into 13 fungal genera, among which Fusarium covered 55.0% as the biggest population followed by Colletotrichum. Furthermore, Fusarium isolates were classified into five distinct species comprising F. fujikuroi, F. proliferatum, F. verticillioides, F. asiaticum and F. incarnatum through sequence analysis of translation elongation factor 1 alpha (EF-1α) and DNA-directed RNA ploymerase II second largest subunit (RPB2). Among them, F. fujikuroi accounted for 51.22% (42/82) and was isolated from 91.7% (11/12) soybean varieties. Pathogenicity assay showed that five Fusarium species were able to infect the seeds of soybean cultivar “Nandou12” and caused water-soaked or rot symptoms, while F. fujikuroi and F. asiaticum had much higher aggressiveness than other species with significant reductions of seed fresh weight and germination percentage. Accordingly, this study indicates that Fusarium species are the dominant seedborne fungi in the intercropped soybean in Sichuan, China, and this provides some useful references for the effective management of seedborne fungal diseases as well as soybean resistance breeding in maize/soybean relay strip intercropping.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-10-20)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-10-20)
    Abstract: Seed-borne pathogens cause diverse diseases at the growth, pre- and post-harvest stage of soybean resulting in a large reduction in yield and quality. The physiological and metabolic aspects of seeds are closely related to their defense against pathogens. Recently, Fusarium fujikuroi has been identified as the dominant seed-borne fungi of soybean seed decay, but little information on the responses of soybean seeds induced by F. fujikuroi is available. In this study, a time-course symptom development of seed decay was observed after F. fujikuroi inoculation through spore suspension soaking. The germination rate and the contents of soluble sugar and soluble protein were significantly altered over time. Both chitinase and β-1,3-glucanase as important fungal cell wall–degrading enzymes of soybean seeds were also rapidly and transiently activated upon the early infection of F. fujikuroi . Metabolic profile analysis showed that the metabolites in glycine, serine, and threonine metabolism and tryptophan metabolism were clearly induced by F. fujikuroi , but different metabolites were mostly enriched in isoflavone biosynthesis, flavone biosynthesis, and galactose pathways. Interestingly, glycitein and glycitin were dramatically upregulated while daidzein, genistein, genistin, and daidzin were largely downregulated. These results indicate a combination of physiological responses, cell wall–related defense, and the complicated metabolites of soybean seeds contributes to soybean seed resistance against F. fujikuroi , which are useful for soybean resistance breeding.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Pathogens, MDPI AG, Vol. 11, No. 4 ( 2022-04-16), p. 478-
    Abstract: The dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize–soybean relay strip intercropping has been shown to significantly control the type of soybean root rot that tends to occur in monoculture. However, it is still unknown whether the rhizosphere microbial community participates in the regulation of intercropped soybean root rot. In this study, rhizosphere Fusarium and Trichoderma communities were compared in either healthy or root-rotted rhizosphere soil from monocultured and intercropped soybean, and our results showed the abundance of rhizosphere Fusarium in intercropping was remarkably different from monoculture. Of four species identified, F. oxysporum was the most aggressive and more frequently isolated in diseased soil of monoculture. In contrast, Trichoderma was largely accumulated in healthy rhizosphere soil of intercropping rather than monoculture. T. harzianum dramatically increased in the rhizosphere of intercropping, while T. virens and T. afroharzianum also exhibited distinct isolation frequency. For the antagonism test in vitro, Trichoderma strains had antagonistic effects on F. oxysporum with the percentage of mycelial inhibition ranging from 50.59–92.94%, and they displayed good mycoparasitic abilities against F. oxysporum through coiling around and entering into the hyphae, expanding along the cell–cell lumen and even dissolving cell walls of the target fungus. These results indicate maize–soybean relay strip intercropping significantly increases the density and composition proportion of beneficial Trichoderma to antagonize the pathogenic Fusarium species in rhizosphere, thus potentially contributing to the suppression of soybean root rot under the intercropping.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...